L01.01. Cosmography using Standard Sirens

Basics of Cosmology
Cosmological Principle (Large-Scale):

Homogeneity: Invariance under translations
Fall in variance in matter overdensity when smoothened on radius R

Isotropy: Invariance under rotations
Constant temperature of CMBR in any direction

Time-Asymmetry: Evolution through time

Fundamental Observers: R,,,s = a(t)Rcom, COMoving coordinates R, for initial observers at
t = ty, with the physical distance R, scaling by a scale factor a(t).

Metric

Metric obeying Homogeneity & Isotropy:
ds® = —c2dt* + a®(t)dx?

with time set to proper time for fundamental observers. Isotropy implies conformal a(t) for the
spatial metric d¥2. Foliate spacetime into time and homogeneous and isotropic slices ;.

Embedding d dimension maximally symmetric surface in d + 1 dimension with a constraint
d

equation. d¥2 = Z dz? + k’da”, where we transform for 3D, as a = Rcos (%),
=1

z = Rcosfsin (%), y = Rsinfsin¢sin (%), z = Rsinfcos ¢sin (%), to get

((dx?® + x? (dé?2 + sin® 0d¢2) Flat Space
dx? = { dx? + R?sin? (%) (d02 + sin? 9dq§2) Positive Curvature
dx? + R?sinh?® (%) (d92 + sin? 9d¢2) Negative Curvature

with generalization
ds? = dx* + f2(x)d’
with

X Flat Space
f(x) = {sin(%) Positive Curvature
sinh (%) Negative Curvature



Standard form of the FLRW metric,

dr?

ds? = —c*dt® + a*(t) >+ r2(d6” + sin® 0 d¢?)
— RT

Dynamics

- dRph s ; dRCOm . . . PP,
Velocities v = —** = L R, + a(t) =32, with cosmological recession velocity: < Ry,

peculiar velocity: a(t) %en which is short scales.

Hubble Law, v = Hd, overestimate of H,, expanding of the universe since a > 0.
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FIGURE 1
Velocity-Distance Relation among Extra-Galactic Nebulae.
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Redshift, ds? = 0 for photons in an expanding universe, ¢t = a(t)dx, thereby, / % = /5X
te

to give the total distance traveled from emission at ¢t = t. to reception at ¢t = ¢,. For photon

t,+6t, t, t,+6t,
wavelength of cét, we have/ oot :/<5x, thereby eQUating/ oot :/ ot , we
; v, alt) o) Jiim, al)
cot,

have % — 2y = 0 thereby, the wavelengths,

defined through the redshift z, ignoring peculiar velocities.

Distances



Angular distance

Relation between angles (solid angle) and physical size (physical area), related as

A drf2(x)a?(t)  f(x)
Da“g:\/%:\/ 4z T 112

where the area is of the 3-surface at constant time.

Luminosity Distance

Relation between luminosity of an object and the flux received by it,
Let us now consider the flux received from a distant source in the Universe, which has an
intrinsic bolometric luminosity Lb°! integrated over all wavelengths, and per unit wavelength, we

have dL*' = LZ(\)d), where the intensity, averages as /I(A)d)\ =1

Evaluating the number of photons emitted per unit wavelength )., in a time ét. at time of
emission t., given as

dLdt A
— ¢ = LZET(N,)dA.5t,

dN(A,) =
() he/ e hc

For the light emitted by a sphere at coordinate x, after time t,,, the surface area is 4wa?(t.) f2(x)
, how at time ¢,, where we chose a(t,) = 1, and have the number of photons received per unit
wavelength A,, over the entire surface of the sphere, given as

A’I‘ >\r )\r d)\»,-
r = e :L I 5te
AN(Ar) = dN <1+z> (14 2)hc <1—l—z>1—l—z

since the wavelength changes as time proceeds.
Thus the amount of energy that passes through the sphere in a unit time interval is given by

0, (A,) he 1 ( Ar ) d\, Ste

S, A (1+2) \1+z)1+2zdt,

The flux F(\,)dA, is the amount of energy received per unit time per unit area perpendicular to
the line of sight to the source. Thus F(\,)dA, should be equal to

~dN(\) he 1

F(A)dA, 5t, )\_T A f2(x)a?(t,)




which can be simplified as

dN,(Ar) he 1

5, A I 00a(E)
L I ( Ar ) dA, % 1
(1+2) 1+2) 1+ 2z 0ty 4wf2(x)

F(\)dA, =

L I< Ar ) e 1
(14 2)2 1+2 "ot, 4mf3(x)

L Ar 1
- (1+ z)3I ( 1+ z)dAT A f2(x)

The total bolometric flux is integrated over all wavelengths as

Fhol = / F(Ar)dA,

_/(1fZ)3I<1tz>47rf12(x)d/\r

A, A, 1
:/ <LI<1+Z)d1+Z) Arf2(x)(1 + 2)?
Lbol

~41D?_(X)

Hence the photons lose energy through the expansion of the universe, and we obtain the
effective luminosity distance, as,

I, bol
Dium(X) = \ ZeFv FO)A+2)

Cosmic Distance Ladder, with objects of similar luminosity. Radius of Earth through historical
shadow measurements at multiple places, Distance of moon based on lunar eclipse timings,
Distance to sun through half phase angle between Moon and Sun or through Venus transit
times, Distance to nearby stars, in terms of geometric parallax, all done sequentially, Distance
to galactic clusters, using VLBI of active Masers or detached eclipsing binaries.

Cepheid Standard Candles, Period Luminosity relation for Cepheid variables. Estimating flux
through oscillatory observations. Rapid oscillations.Type | and Il Cepheids, error in Hubble
observations.

Fixing measurements through Type la Supernova Standard Candles, recalibration with Cepheid
variables. Cosmic Calibration.



Type la Supemovae == redshifi{z)

o=l 135 mag
Az
::;.m
=
=l
n
=
el
St
Cepheids — Type Ln Supernovae !
a=0.130 mag, N=42 m ' {04
Mg U':I.I
—- . on E
g, <
E . H-04
4 M b1 il Ll 42
E"E ' 4 SN la: m-M (may)
';5' n .
e
Geometry — Cepheids i
o ' “mam L {04
1 et {4
= Mal ] it IF.';. ,#' +Hoo g
E /ﬂr & £ q r 1 --IIAd
= LM // J#  w u moom  m
E Cepheid: m-M (mag)
,":_l Milky Way
o 15
=
g / .
:j: %ﬂ :1].-:1 =
ol A . 4 edon B
azf T i Pl
aaf LA ] 1 -(r4
in % n pL M
Geometry: 5 log D [Mpc] + 25
Friedmann Equations
General Relativity
1 81G

Guw =Ruw — s Rguw = c—4TuV

2
. . . .\ 2 2 .. L\ 2 9

which can be simplified, as Goo = (%) +3%5, and Gij = — [2% + (%) + %]azyij where v;;

is the metric of the homogeneous and isotropic 3-space, i.e., d%? = v;;dz'dz’.

For an ideal perfect fluid Ty, = (oc® + p)upus + pcgu, Which has Toy = oc* and
Ti; = p(t)ca*y;j, and equating the relevant quantities, we have,

[<d>2 n02] 87Go
— + > —
a a 3

Combining the above two equations, we have



This shows that for energy density in the Universe with a non-negative pressure, the scale
factor a(t) cannot have positive acceleration.

Since the scale factor is a growth factor we are free to choose the normalization, such that
a(tg) =1att =ty present. Hy = % at the current time acts as the initial condition for the
problem.

For spatially flat, we have

3H2
&G

Ocritical =

and substituting in the general expression, we can rewrite as,

a\’ 0 kc?
&) (s
a Qcritical CLZH 0

and thereby,

ke (1 _ ) -0
H02 Ocritical "

where the criticality is understood as the density between closed and open universe. Thus, the
Friedmann equation is simplified, as

2
a Q.
a Ocritical a

FOr pratter = 0, Prad = gTch and relations ppaiter < a2 @nd p;.q o< a~*, such that the matter
density falls off, while the energy density of radiation changes due to the change in volume as
well as the change in energy that a photon undergoes when the Universe expands or contracts.

For the combined fluid densities with Quaite = 22t Q4 = -2 Q. = 2 3|l defined at

’ ’
Ocritical Ocritical Ocritical

t = t,, where Q,, denotes the dark energy pressure with p,, = woc?, such that, we have the
combined equation as,

DN 2
<2> = H} [Qmataf?’ + Quaga ™ + Qa0 L 0,072 = HZE?(a)
a

. dt
where Q. = 1 — Quatter — Qrad — Qw. COmputing a(t), thereby x = dxy = ——, thereby,

a(t)

computing the age of the universe.



L02.01 Cosmography using GWs

Cosmic Microwave Background

AT = 3.393 mKk




Extremely isotropic emission, evidence of anisotropies at O(10~3) Kelvins.
Dipole corresponds to peculiar velocity with respect to CMB, due to Doppler shifts.
Fluctuations observed only at the level of 1 in 10°, seed fluctuations in structure formation.

Smaller scale, sound propagation due to pressure waves. Photon fluctuation in baryon
potential wells. Density functional decomposition into a Fourier spectrum.
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Inflation Horizon Present

In the very early universe, we think a period of rapid expansion, called inflation , caused
these quantum fluctuations to be stretched into cosmic scales. These fluctuations in the
energy density imply fluctuations in the local gravitational potential. Regions of high
density generate potential wells. Regions of low density generate potential hills.

Sound waves stop oscillating at recombination when the baryons release the photons.
Modes that reach extrema of their oscillation (maximal compression or rarefaction in



potential wells) by recombination will carry enhanced temperature fluctuations.

Recombination Recombination

k _TU sound

horizon

|93

Power spectral density can help constrain parameters in the Hubble dynamics, including €2,
, Since the angular diameter changes.
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Angular wavenumber, called a multipole ¢, of the power spectrum is related to the inverse of
the angular scale.

Ratios of alternate peaks, comprising maximal rarefaction and maximal compression,
helping constrain cosmological parameters.




Hubble Tension

For ACDM universe, there is a discrepancy between Baseline standard candle results and CMB
inferences.

CMB and Independent Local H, values

A

CMB
67.41+0.5

TRGB Cepheids
(LMC) (N4258+MW)
69.8 + 1.9 3.9 + 1.6

Relative Probability Density

64 66 68 70 72 74 76 78 80

Expectation to resolve using gravitational waves.
Primer (Semi-Classical) on GW

Frequency Evolution

For two bodies of mass M and m, seperated from centre of mass by R and r, we have

Mw?R = % and mw?r = (G;f—r”)@, and we have the relation MR = mr, thereby, we arrive at

2 G(M + m)

(R+r)?

and the total energy Ei is,

The power P,,4 radiated is proportional to the quadropole moment Q, related to the square of



the moment of inertia Z = mr? + M R?, thereby, simplifying, we have,

mM
= R+r)?
m+M( +7)

related to the reduced mass ratio p = 724, and thereby,

GT2%W8
o3

Prad X

and now noting the rate of change of total energy can be related as,

d 1 2 mM 1 dw
_%Etotngg—lw 3_t
(M +m)3
and by the effective loss of energy, we have, Pr.g = —%Etot, such that,
a m2M? G(M +m) e 1G% mM 1 dw
Q — =76 ———w I —/—
(M +m)? w? ¢ 3 (M+m)% t

Hence, we have,

Thereby

M=—"17 =_ 5 =

(mM)% 63 (iwu dw)g
(m-l—M)% G \ 3a t

with the effective mass combination as the chirp mass M. Note that the gravitational wave
frequency fgw is related by,

2nfaw = waw = 2w



Normalized amplitude

Frequency (Hz)

30 20 -10 0
Time (seconds)

For cosmological expansion of the universe, we have to account for the redshifted frequencies,
thereby, we have the relations

w t
172 taet = ——— Maet = M(1+ 2)

Wdet - 1+ 2

Degeneracy in the frequency evolution due to the detector frame masses.

Signal Amplitudes

Gravitational wave polarisations in frequency domain,

1+ cos?.

o) = Al ) (55 ) expli(, M)
R (f) = A(f, M) cos texp (% +i\Il(f,M))

where the amplitude and phases are given by
1 5 (GM)F 1
DL 24n% 7 f
3 [7GM\ T 1
\IJ(faM):27Tftm_1_¢c+_ M —
128 3 f%

4
The amplitude can give the luminosity distance Dy, which can be corroborated for the redshift,
and give cosmological parameters.

A(f, M)

o~

c



Sky localisation with multiple interferometers, by measuring the delay in respective time of
coalescences. Response depends on detectors with the antenna pattern function,

Fi (a,0,9,1).

[F) Binary Evolution (Newtonian Analysis)
Given at leading order, gravitational waves are generated by a time-varying mass

quadrupole moment,

2G ..
hi; () = EQ;T(t —to)

where r is the distance from source to observer, t..; =t — = is the retarded time, and Q;;
is the mass quadropole moment, given by

g 1
sz — MY — §5UMI§
where M is the second mass moment defined as
MU(t) = /d?’mg(m,t)wixj

Now, we consider a binary system with m; and mg in a circular orbit with velocity w and
relative separation R.

For the origin at the centre of mass, we compute the position vectors,
ZIZZI = (37 R cos wiret, 47 Rsin witret, 0), mg = (— 31 Rcoswtrer, — 31 Rsinwtrer, 0), we have the
second moment tensor M* = myztz] + mezhzl as

i €08 2wirer + 1 sin 2wt et 0
MU = 5#32 sin 2wt ¢ —(cos2wtes —1) 0
0 0 0
Thereby, we have
— CcoS 2wtrer — Sin2witrer 0
MY = 2uR%*w? | —sin2wt,s COS2wits O
0 0 0
We now use
G .11 - 99
he = o (A - a7%)
h, = 2y

cir



to arrive at

4G

hy = ———pR*w? cos 2wty
cir
2G

hy = -0 R2%w?%sin 2wt ef
cir

Now we use the Einstein quadrupole formula, relating the total power P radiated away,
P 5 (970y)
Since, for our example, we have 9% = M. thereby,

where we have,

Sin 2wtref — COS wtref 0
MY = 4uR*w? | — cos 2wty —sin2wtyes O
0 0 0



hence, contracting,
M”MZJ = 32,u2R2w2

hence the power radiated simplifies as

P 16Gu>R*wS
N 5¢d
We can use Kepler's third law w? = %’ and set
A = E Rw

Further, setting 27 fow = 2w, we have the expressions,

4 3 S\ 5
h+:__(G/2\A> (W];g) c0s 27 fawtref

r C

4 H A\
hxz—_<G/2M> <7r];g) Sin 27 fqwitrer

r C

3
(mamy) 3

where we have the chirp mass M = . We express the power radiated as

1
(m1 +m2)3

10

p_ 32¢° [ TGMfaw \ *
5@ c3
and the total energy E = —G";—Il{”? can be derived as
oo _(WszszéW)§
B 8

Now we use the energy balance P = —F, the rate of loss of energy from the system is
equal to the power radiated in GWs, then the rate of increase of the GW frequency, can be
seen as

32¢° (71GMfow\ T _ 1 (G M?
5G 3 3\ fow

1
3 .
fow

to arrive at

. 96%7% (GM\T
few = —3 < c3 ) faw



L03.01 Gravitational Wave Cosmology

Standard Siren: GW170814
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Follow up analysis with electromagnetic counterpart. Constrained redshift from spectra
observations, of NGC 4993 and kilonova emissions. This further constrains the Hubble
constant, v = Hyd, leading to posterior for the Hubble constant. Account must be taken to
separate out the recession and peculiar velocities of the source galaxy, and considering the GW
wave velocity.

Bayesian Approach

Likelihood, given our dataset of GW observation, recession velocity v,, peculiar velocity
averaged v, given the inference parameters,

E(.’BGW, Ur, <UP> ‘da COS L, Up, HU) = p($GW|d, COos [’)p(w"d’ Up, HO)p(<UP> ‘vp)
where we have the cosmological v, can be assumed normal distribution, with

p(vr|d, vy, Ho) ~ N (v, + Hod, o7, ) (vy)



and similarly,
p((o)[0) ~ N (05,02, ) (1)

such that, we have the posterior,

m(Ho)

mﬂ'(d)ﬂ'(vp)w(cos L)

p(HO’ {da COS ¢, ’Up}|mGW7 Uy, <Up>) X p(mGW|d’ Ccos L)p(vr|d7 Up7 HO)p(<Up> |vp)

where the N, (H,) accounts for the selection criteria. Marginalizing over the other parameters,
we obtain the posterior p(H).
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Follow up by observations of apparent superluminal jets perpendicular to inclination, by VLBI
(Very Long Baseline Interferometry). Measurement breaks degeneracy between distance Dy,
and inclination ¢.

Peculiar Velocities Measurements

Galaxy Scaling Relations and their Residuals:

Tully Fisher Relation: Strongly constrains the luminosity and rotational velocity of
galaxies, residuals in the fundamental plane are correlated with peculiar velocities.



Highly constrained relation, with minimal scatter.
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The fundamental plane, is a relation between size, surface brightness and velocity
dispersion. Correlated with the Virial Theorem.

Hubble constant from BBHs

Determining Hubble constant from GW observations with no electromagnetic counterpart. We

can estimate H, < H,,,., then the error box can be surveyed for bright galaxies, with velocities
below v < H,.r. Statistical analysis, through analyzing clusters in the localisation determined
earlier, by understanding their redshifts.

Statistical Host Identification, ignoring the clustering of galaxies, potential host is in the
galaxy catalog, with the localization, using redshift measurements. Single galaxy with the
correct Hubble constant, rest are randomly distributed. Corroborated with multiple events.



Spectral Sirens, Invariance of mass distribution of BBH merger events, while GW events
measure the detector frame quantities, M — M(1 + z).

Luminosity distance

log[Detector frame mass]

Shifts in the mass distribution with redshifts, constrains the Hubble constant. For increasing
luminosity distance, the whole distribution of detector frame masses shifts to higher values. The
amount shifted corresponds to the redshift at a given luminosity distance and it is therefore
sensitive to the expansion rate. For example, a higher value of H, associates higher detected
masses to the same distance.

Bayesian approach must be implemented, necessary since there are huge degeneracies in the
intrinsic mass measurements. For cosmological parameters, rate and shape parameters, we
have A = {Q, X', N'}, such that,

p({d}|A)p(A)
p({d})
N

where we have <7-(A) = Npyop(6, X') as the rate and shape parameters. Parameters of

p(A{d}) =



individual events drawn from sample properties,

Ppop(0i|\')
PEHX) H Jdop Ppop(0i|X)

Even in the absence of error bars, we have to be careful about selection effects, where we
weight by the detection probability,

ppop 9 |)\ pdet ppop 0 |)‘)
({6}
{ } H fda ppop 0 |>‘ )pdet H fde ppop 0 ‘)‘ )pdet(a)

Further, incorporating noise as series of realizations and an overall threshold,

pa®) = [ p{ay0)a0 = [Tap({ay0)d0
Threshold
where the indicator function selects the detectable events.

We have the probability of the data given the parameters as

J d6p({d}|{6})ppop (6X)
Z(N)

PN =
The evidence simplifies,
20) = [[ata) [ a8 pUa D pen((6)1)
= [an ([ atay pitayiion) oot t6313)
— [ d8 pac(E)pnl(E}}X)



L04.01 Gravitational Wave Cosmology

Bayesian Analysis

Shape Parameter

Recapping,

{9}|)\ H Ppop(0i ’)\ Pdet (6 H Ppop(0i ‘)‘)
fde ppop 0 ‘)\ pdet fd9 ppop 9 P\ )pdet(e)

We have the probability of the data given the parameters as

J d0p({d}{0})ppop (1))
fd9 Pdet({e})ppop({a}p‘/)

Prior to the meta analysis, parameter estimation runs provide posteriors from the GW analysis.
We have

p({d}X) =

_ p(8ildi)p(d;)
P(diwz‘) = W

where the priors are reweighted to those included in the likelihood. We thereby, have,

Nobs L 8 1pp0p(03‘Al)

P = L et

such that we can use Bayesian theorem to arrive at,

, Zj 1ppop(0J|/\)
p(X[ {d}) = {d} H | i pae T )

Rate Parameter
We assume a Poission likelihood,

D(Nobs) ~ exP(—Ndet)Ndei'”

such that, we have the average number of observations
Nobs = /ap(Nobs)dNobs = /Ot exp( Ndet)Ndet _aNdet

as the effective detection distribution.



Combined Likelihood

We have the overall likelihood

Likelihood Samples
(d
()\l N’{d} ]jbs ] 1 pOP(ejy)\l)p ( N )N Nops
= 7r €XP\—LVdet e
fdﬂ Pdet ({0} Pp0p({9}|)‘/) et
P Number Prameters
Selectlon Effects

For a fixed cosmology, we have the distributions of the posteriors.
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Incorporating Redshift

We can further separate the cosmological parameters {6} = {#', z} by using independent priors
on @' and the line of sight redshift z prior. The redshift of the GW event could be related to
galaxies with apparent magnitude m, absolute magnitude M, and that are either in the catalog
(@), or not (G). We can marginalize,

p(el8, ) = [ [ 3 dmdb ple,m, M, 500", )
9eG,G

:p(G|9',A)//dm dM p(z, M, m|G, A) +p(é’|9',A)//dm dM p(z, M,m|é, A)

In C;,talog Out agtalog
We have p(z, M, M|G, A), from Bayes theorem, In Catalog as

p(z, M, m|G, A\{s})p(s|z M, m, G, A)
p(s|G, 0", A)

5(M — M(z,m, A))p(z,m|G, &' )p(s|z, M, A)

p(Z, Ma m|G7 A) =

1
- p(s|G, 0", A)

Thereby, the integrals,

1
//dm dM p(z, M,m|G,A) = m/dmp(zam|G79/)p(s|za M(z,m,A),A)



where we have the incorporation of redshift uncertainty into the galaxies in the likelihood, as

p(z,m|G,0') =

> p(2l2)d(z — %)

Ngal(el) L

Similarly, for the Out Catalog term, we have a purely cosmological dependent term, we use the
selection threshold such that,

p(Glz, M, m, 0, Hy) = O[m — mu:(0)]O[zcus — 2] + Oz — Zeut]

where the galaxies fainter than magnitude threshold but within redshift range, and galaxies
outside the range. The integral simplifies as,

Mmax

: {Olccu—4 [ " ant p(aain)pein
(G|z, M, m) M (z,m,A)

1
p(s|G, 0", A)p

M ax
100 - zeu] /M " M p(M[A)p(=|M) }

//dm dM p(z, M,m|G,0',A,s) =

For the redshift line of sight prior, we can also separate parameters, cosmological, or
correspond to normalization or shape or mass distribution,

p(s|z, M, A) = p(s|z, M, Arate = D(8|2, Arate)D(s| M)

where we can have uniform or luminosity weighted sampling for p(s|M). The line of sight prior
can be pre-computed in offline analyses.

Sampled Posteriors

Degeneracy between Hubble constant Hy and features of mass distribution upto the maximum
mass of the black hole.
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L01.02 GW Probes for the Early Universe

Introduction

Weakness of gravitational waves interaction, universe is transparent to GWSs,

I(T) G2T" < T )
~ 5 ~ <1
R(T) T /MPlanck MPlanck

decoupling of the gravitational waves, due to less effective cross section rate. The interaction
rate I'(7T) is assuming weak interaction at temperature T'. Similar calculations for photons,
neutrinos show interaction.

Similar analogy to the Cosmic Background. Stochastic GW Backgrounds, a fossil radiation, of
the earlier universe, at those energy scales of GW wave generation.

Flat Space Gravitational Field Background

First-order perturbation |k, (x)| < 1, with metric
9 (®) = N + Ay ()

Linearise in h,, (x), with metric g, (z) ~ n,, and its inverse g’ (x) ~ n**(x) in the first order for
contractions. Affine connection,

1
Riemann tensor, being invariant under coordinate transformations,

1
RS, 5~ E(aﬂayhg + 850%h,,, + 0,0%h,5 — 930,h)

Einstein tensor,
1 - - - -
G = 5 (aaa,,hf; + 9%0ha — Dhy — nﬂ,,aaaﬂhg)
where k., = h,, — +7,,h is the trace free stress tensor.

Gauge Transformations

Since General relativity is invariant under coordinate transformations, we have linearised
perturbed GR being invariant under slowly varying coordinate transformations.

We have z# — z'* =zt + ¢#, thereby, hy(x) = h), (2) = hu(x) — 0,8 — 0,€,, invariance
maintained under [0, < |hqg| Such that [[A], || < 1.



Lorenz Transformations

Consider z# — z'* = a# + ALz? + ¢¥, where a* are some constants, AL is the Lorenz
transformation, and & is a small gauge transformation. Inverting, we have

z¥ = Ajz# — A} — Aj¢r, thereby, the derivative 222 ~ A7, — A} 2% 22" in the first order.
Thereby, we have the metric

gap = Gop = Nap + [Pog — AGas — AG&og]

N J/

=R,

where hfm = AgAghW. Propagation on the flat metric, as an effective background. Thereby, A7,
can be treated as a 2-tensor on a flat background under Lorenz gauge transformations.

The derivative transforms as 0#h,,, () — 8'#h),, (&) = O*h,, (x) — OE,, Lorenz Gauge sets
al‘fziw(a:) = 0, which can be done by solving the equation 8*h,,(x) = C¢,. The Poisson
equation is simplified as L, = 0*h,, = J,, in flat spacetime, as the Dirichlet boundary
conditions are met. This simplifies the derivatives in the Einstein tensor, by setting it to zero.

From the Lorenz gauge, we have the Einstein equations being represented as a Wave
equation,

Oh,, = —167GT,,

Thereby, the gauge 8*h,,(x) = 0 implies 8*T,, = 0. Implies energy-momentum tensor of the
source is conserved. Thereby, the source does not lose energy and momentum by emission in
linearised theory, source described by Newtonian gravity. Linearised theory does not describe
how GW emission influences the source, but describes behavior of test masses.

We have symmetries A, = h,, implying 10 components, with further the Lorenz gauge,
0"h,,(x) = 0 reducing to 4 independent components. These are not all physical gauge
transformations, residual gauge freedom exists in the Lorenz gauge.

Due to residual degrees of freedom, performing the coordinate transformation under the Lorenz
gauge, with z# — z'* = z# + &, with [J€# = 0, to remain in the gauge. We have the relations,
hu(®) = h(®) = by () — € Where £ = 1,,0%a — 9,€ — 0,€,. We see the generalized
conditions, [J¢,,, = 0 since the commuting derivatives in vacuum, and [J¢,, = 0. Further, we
have Oh,, — O'h},, ~ O(h,, + £,,). By the additional gauge freedom, we set » = 0 and hence
R, = h,,, and further ki = 0. Further, by our earlier Lorenz gauge, 8"k, = 0, and hence
V2hgo = 0, and thereby, we arrive at the further constraints for h,,. We have the 8 constraints,
hoy = 0, Al = 0 and d'h; = 0.

Restricting to vacuum spacetime, the residual coordinate freedom can be used to fix the
constraints, Transverse-Traceless Gauge*. Traceless: &}/ = 0 and Transverse hj, = 0 with



further conditions aih;j = 0 and hgy = 0. Since DE,L,, = 0 — Oh = 0. The trace transforms as
h — h' = h — 20"¢, thereby, Oh = 0 and therefore, only because of vacuum.

Thereby, the number of independent components in n dimensions is @ —(n+n)= "(”T_‘Q’)

”(”;1) symmetric components, are constrained by n gauge conditions, and n residual

degrees of freedom. For n = 4, we have 2 physical degrees of freedom.

where the

GW Waves

Thereby, only 2 remaining physical degrees of freedom in the metric leading to

since we can chose 4 functions ¢, freely. These two independent polarisations are summed as
d3k e .
hij(@) = D | —she(R)el;(k) exp (~ik(t — k- )
r=-+,Xx (27T)

which are plane waves, transverse, moving at the speed of light. The polarisation tensors are
transverse in [m,n] plane

where the free waves are assumed to travel in the z direction. We have

hy hye O
hij(z,t) = | =hx hy 0| cos(w(t— z))
0 0 O

]
Metric line element is thereby,

ds? = —dt* +dz* + (1 + h; cos (w(t — 2)))dz? + (1 — hx cos (w(t — 2)))dy?
Action on Test masses

Consider plane propagating waves in # direction, h,, ~ A, exp(ik; - #), thereby,

Ohu = —hun®kqks = 0, implying that, k%k, = 0, thereby, w? = k2. Further, we use the Lorenz
gauge, to have 8*h,, = 0, thereby A,,k” = 0, hence A,y = A, which reduces to 6
independent components. Further, with the additional gauge freedom, we can relate the in the
new coordinates, h,, — k), = hu, — 8.6, — 8,€, + 1,,0%Ea. Thereby, we have

A — ‘A;,w = A, — k& — ik, + 1,1k, £ . This reduces further constraints to only 2
independent quantities of A,,.

Geodesic deviation equation &' = —Rj &/ = %fzijfj in the TT gauge. Thereby, the evolution is
directed by the second derivative of the metric tensor perturbation. The action on test masses



can be seen through the effective displacements.

21

¢ 0

Quantisation

T
— T S
2

Polarisation is related to the spin of massless particle expected upon quantisation S = %’r
where 6 is the invariance angle of generic rotation. On transformation by 8 = 2x results in spin-2
guantisation which are the two independent degrees of freedom which are physical. GWs have
only two physical components is a manifestation of the intrinsic nature of gravitational
interaction, mediated by the graviton, a spin-2 massless field, that has only two independent

helicity states. Thereby, true with spacetime with matter fields.

Matter Field Gravitational Background
Metric

guu(w) = N + h',uu(w)

with splitting into irreducible components under rotation.

ho = —2¢
~——
Scalar Trace
hoi = 0;B + S (0;8: = 0)
~—~ ~—~

Scalar Divergence-Free Vector

1
—— = =~

Scalar Trace Vector Tensor

N J/

Scalar

Now, infinitesimal coordinate transformations, z# — z'* = z# + ¢H,



huv(®) = R, (x) = hyw(®) — 04w — 0,€,, With the decomposition, £ = (&0, &) = (do, 9id + d;),
thereby we have the invariant coordinate transformations,

. 1.
(I)zqﬁ—l-B—EE Scalar

1
0 =—-2¢— §V2E Scalar

%, =8 —F (8;Z;=0) Vector
H;j=H;; (0;M;;=0,H;=0) Tensor

Two scalars, one vector and one tensor gauge invariant variables. Six independent degrees of
freedom of the metric.

For the T,,. we have the components,

Ty =
~
Scalar

Toi = Oiu + Us; (8Zuz = 0)
~— —~—

Scalar Divergence-Free Vector

1
T = p(sij + <3183 - —V2)0' + 81‘1)]' + 8j1)i + II;;
~~ 3 —_———— ~~

Sczxrlar

7

Scalar Trace Vector Tensor

Similar to before, 4 independent quantities, due to energy-momentum conservation.

Rewriting the Einstein equation in terms of the 6 gauge invariant variables,

V20 = —81Gp

V2® = 47G (0 + 3p — 31)
V2Z, = —167GS;

DHij - —167I'GHZ'J'

Three Poisson-like-equations, one wave equation. Only the TT metric components are
radiative. Only the TT metric components are radiative.



L02.02 Cosmological Gravitational Wave
Background

G

Gravitational waves only change the proper distance between the masses, and not their
coordinate distances.
For a particle at rest initially, with world line z#(t), we have

A2zt 7 dz® dz” _

dr? thap dr dr

which can be simplified in the TT gauge to arrive at ‘gjz” = 0, implying # must remain
constant, since it is at rest initially.
However, the proper distance defined through the metric

[ dz dzP
EZ/dS:/ gaﬁdT?dT

is shown to change with the propagation of GW waves.
The proper distance is related to the coordinate distance with the effective scale due to the
GW wave, and the coordinate distance is constant.

GW Energy-Momentum Tensor and GW Propagation

Background spacetime has maximally symmetric sub-manifolds. We study the propagation and
generation of a background of fluctuation scale L. Resorting to a clear separation of scales.

Relative scale of spatial variations are small, |h,,| < 1 and L’\—B < 1land ;—f < L

Distinction between background and GWs, averaging of physical quantities, A < £ < Lp as the
characteristic scale, fz < f < f, we average the full metric over the length scales, removing
high frequency or smaller lengths, such that (g,.) = g, and (h,,) = 0.

Expanding the Einstein equations to second order in h,, (since linearisation gives zeros),
through Ry, = R, + R,(},,) + R,(f,,) where the quadratic term can influence the background,
averaging at second order.

Background Equation



Background Einstein equation, with (---) = [-- -], such that,

B @) low 1 low
Ru = |[-R@)|" +87G| T — 5Tgu
_ low
where R, is the background curvature in O((1/Lg)?), [—R,(fy)] sources the curvature of the

background in O((h/))?), and T,,, is the matter density only sourcing the background curvature.
By comparing the orders, we have the perturbation,

A
<
Rearranging, and performing the average,
_ 1
Gu = (Ruw) — EQMV<R> = 8nG ((TIW> + T;S/W)

where Tlffjw is the gravitational wave energy-momentum tensor, given by

1 2 1_
T = g (i~ 5w k)

and reducing in TT gauge, we have,

1
TGW _ __ ~ R Vhaﬂ
wv 397G <V/L sV >

where we note that the Bianchi identity, is for the entire energy momentum conservation,
including the gravitational wave emission. The energy density of GW can be derived from the
trace, as,

OGwW — <hijhij>
which is gauge-independent.
Perturbed Einstein equation

Now, we focus on the high modes, given by the linear term,

1 high
+ 87G {TW — ETQW]

high
Y = -]

high . - : , ,
where here the [—Rff,,)] is negligible as the non-linear interaction of the wave, and T},, can

be the source terms. The perturbed Einstein equation, is thereby,

1 _ .
R = 5 @R + by R) = 87GIT,,) "™



where the evolution of GWSs on the curved, but smooth/slowly evolving background is projected.
The higher T, contributes as a possible source of GWs.

Thereby, we can calculate by expanding the Riemann tensor,

1_- AN JIo o1 1 — a T o 1 - T 1 — — 7
— 5O+ RS + VoV Ry = 55V VP ko + B | S50 has = 5 Ruwdas + Tahvye| = 87GIT,

Propagation in FLRW

For the FLRW metric, we have, in the gauge, d;h;; = 0, and h! = 0,
d82 = —dt2 —+ a2(t) (513 -+ hzj)dac’dwj

with solving the above equations in the traceless tensor,

V2
a?(t)
The source tensor represents the anisotropic stress, with no gravitational wave from the
homogeneous component.

h”(m) + 3Hh”(:lt) — hij(a:) = 167TGHij(€B)

Using the translational invariance, we perform a Fourier transform in space, through

i) = 3 [ (;lT’;hr(k,we:j(k) exp (ik - @)

r=+,x

where the time dependence is still present in h,.(k, t), unlike Minkowski. Similarly, we can
decompose the source as,

3 ~
I, () = ; / %Hr(k, el (k) exp (ik - z)

where we can decouple for each polarisation mode, as
B! (k,7) + 2Hh.(k,7) + k*h,(k,7) = 167Ga’* (1)L, (k, T)
where we use the conformal time derivatives.

For the homogeneous equation without source, we can have the power law scale factor
a(t) = ap7™", and we can solve in terms of Bessel functions, as

B, (k)

anT" 1

A, (k)

anT" L

hr(ka T) = jnfl(k'r) + ynfl(k'r)

where can transform H,(k, ) = a(7)h.(k, ), Wwhere H! (k,T) + (k:2 - %")Hr(k, 7) = 0 when

“7" o H, with two limiting cases: sub-Hubble modes, for k? > H? where we have plane GW



waves with redshifted amplitude, and super-Hubble modes, where k? < h? and relevant
solution under inflationary initial conditions.

We have defined GWs and GW energy density without ambiguity in the FLRW spacetime,
which oscillate and decay with the expansion of the universe.

Stochastic GW Background

Only statistical properties can be accessed, due to incoherent superposition of sources which
cannot be individually resolved. Confusion noise, indeterministic combination of deterministic
sources.

For a GW source at time t. in the early universe, which cannot produce a signal on length/time
scales larger than the causal horizon, with

¢, <H!

where the characteristic length scale of the source is Z., representing the size of variation of the
tensor anisitropic stresses.

The angular size on the sky today of a region in which the SGWB signal is correlated, is

@*:

da(z)

such that the number of uncorrelated regions accessible currently is around © 2, hence order
of magnitude analysis, results that the details of the signal cannot be accessed.

We can reduce the ensemble average to the volume/time average by the Ergodic Hypothesis,
with different realizations of the GW signal in the homogeneous and the isotropic nature of the
universe.



L03.02 Stochastic Gravitational Wave
Backgrounds

Primordial SGWB

The primordial SGWBs are homogeneous (similar to the FLRW spacetime, with the correlators
depending on the relative proper distance, (hi;j(x, 1)hu(y, 72)) = Fiju(|le — yl, 71, 72)) and
isotropic (there exists induced anisotropy, like the dipole with respect to the cosmological frame,
more challenging than the monopole), unpolarised and Gaussian (Central Limit Theorem,
independent random realisations).

Power spectrum of the GW amplitude, using the cross correlation
(e, TR (@, 7)) = =0 (k — @)0,ph2 (K, 7)

which entails, the characteristic nature similar to the CMB. It is the second moment, as the two-
point correlation function.

For the GW energy density ogw, We note,

(hij(@, Yhij(x, 1)) (hij(@, T)hij(@, 7)) :/“@fwcw
32nG 32nGa?(T) o k Olnk

OGW —

For free propagating sub-Hubble modes, we can expand as plane waves in the Fourier space,
using the freely propagating plane wave, and time-average by approximating

W2 (k,7) ~ k*h2(k, 7). We have the same structure for the cross correlation function as above,
by using quasi-static nature of the spacetime, such that we can Fourier transform, such that,

5

x 8
(s (e, IR (0,7) = —5-00) (e — Q)32 (R, 7)

The power spectrum of the GW energy density can be related to the power spectrum of the GW
amplitude as

docw _  K*hE(T)
Olnk  167Ga2(T)

Prospectus: LISA



Confusion noise detection from binaries, and stochastic GW background.

10-165 \' : M e el | i ! %= i | ;i 14 i =1y L % L |
i Yoonti Galactic Background
L) 1
: l\ day hour . I MBHBs at z = 3
A7 2 10° M
107 F

“\”\ month
|

EMRI Harmonics
LIGO-type BHBs
GW150914

Gal. Bin. (SNR > 7)

¥ Verification Binaries -

hour
10° M.

10'195"

Characteristic Strain

1 0~20

Observatory
Characteristic Strain

=21
10 ' = = Total

107 1074 1073 102 107" 109
Frequency (Hz)

Null channel evidence is required, due to lack of cross-correlation.

Pulsar Timing Array

Rotating, magnetized neutron stars emitting periodic radio-frequency EM pulses, whose arrival
times can be modeled by timing residuals, studying effects of passing by gravitational wave.



t ! ’
- DNetector frame (W frame
Through gravitational redshift, caused by waves emitted by far-away sources, and travelling
through spacetime between the pulsars and the earth. Photon from the pulsar, received at the

arrival time

which leads us to,

1 . . L
t,—t.=L+ 5'&"&]/ ds h;j(t. + s,z + su)
0

Effect of metric perturbations on a single beam.
Principle of measurement, is to compare alternate pulses, thereby, the time residual shift, is

given by



1

L
AT = Alﬁ]/ ds [h”(te + s+ P, T+ 5'&) - hij(te + 8, @+ S'ﬁ’)]
0

due to the varying time-dependence of gravitational wave.

Thereby, we have
ifyJ te—k-x+L(1—k-0)
_— / ds [h”(X + P) — hij(X)]
te

which can be Taylor expanded, as

AT 1 44/

~

P 21_ k.4

[fbij(te + L, xo) — ilij(tea 030)/]

Earth Term Pulsar Term

where we can estimate the scale of time variation, with a semi-classical approach.



L04.02 Pulsar Timing Arrays

PULSAR
TIMING
ARRAY

GRAVITATIONAL
WAVES

SUPERMASSIVE 4T

BLACK HOLE BINARY

Time Delay Analysis

We have

AT =

1 il to—k-z+L(1—k-a)
_ / ds [hij(X + P) — hij(X)]
t

21_’%"&: eik'w

Noting the frequency evolution (chirp) as

1/ 5 \% 1
fGW(T):?<256) (GM,)rt

where we understand that fowP < 1, thereby, h;; is Taylor expanded, as

AT 1 aia!
P 21_ k.4

[{lij(te + L, 11301 — Zh’j(te, wo)/]

Earth Term Pulsar Term




The GW wave at earth, and at the pulsar differ by a characteristic time delay.
The timing residuals are estimated as

tret+T AT
R(T) = dt —
(T) / =

Measurement plausible through extremely small residual order, with the precision of pulsar
monitoring.

Correlations between many pulsars to reduce noise. For the earth term, we have
t. + L — |eq — x|, which dominates since the pulsar term varies. The cross correlation is
related as

tref+T tref+T
RmR() = [ [ < AT 1y ﬂ(t">>
tref tref Pa Pb

where we expand

Ap@- = / g’T’;hr(k)F;(k) exp(—ik(t' — k- r))[1 — exp(ikL;(1 — k - u;))]

where we have put the earth at the origin, and F; is the detector response, corroborated as,

. 1 alal
Frk)=-——2%
21-k-a
We use the Stochastic power spectrum
. 87° () 2
<h7“(k’7 T)hp(qa T)> = ?5 (k q)érphc(k77-)

and noting that the earth therm dominates, for two different pulsars (a # b),
[1 - exp(ikL,(1 — k- u,))][1 — exp(—ikLy(1 — k- up))] ~ 1
we simplify as

N F16))
o(T T)) =C(0, d <
(RUT)RUT)) = Clow) [ df 555
where C(6,;) solely depends on the angle between the two pulsars, characteristic of the
Hellings & Downs curve, defined as

[1 4+ cos(2mf(T — tret))]

) = [ o tFF; ()

Similar power spectrum obtained from single source of supermassive black hole with multiple



pulsars.
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Modelling

F\NY 2
hC(f)NA(fref> 4T3

in terms of the power spectrum of the GW energy density, becomes,

o

Qaw ~ 2 PR(F) = Qe (For) [ =
GW 3H02 c — WEGW \Jref fref

We compute the relative energy density to constrain &, such that we have

h(t) = j(:)_r (GM)® <

dt

%39) d [£7(¢) cos(28(t))]

such that, we have the integral for

oaw 3 df .2
> 3Co. /Tf Qaw(f)

where the astrophysical modelling of the spectrum conditions the observation.

We have

dogw dz / Ny dF
W A
ang =) 772" ) T A, &P



where few = (1 + 2)f and A = {\} are the intrinsic parameters. We have the spectral index

doaw 2
dlnf X f3.




L01.01 Probing Large Scale Structure

Inhomogeneous Universe

Statistical homogeneous universe at large-scales, has a lot of structure, which evolve with time.
CMB anisotropies, and distribution of galaxies.
Matter power spectrum probed from different sources.

.
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Projected correlation functions show clustering.

FLRW Background

Homogeneous and Isotropic metric for k — 0, given by
ds® = g.pdz®dz? = —c2dt* + a*(t)dx?

We normalize at current epoch, a(to) = 1, and defining, redshift observable, z = + — 1.
Substituting in the Einstein equation, we have the Friedmann equations,

(G) -5

at) _ | 3P,
o0 - 4G;(gz+ =

)

where we assume the energy density and momentum tensor for a perfect fluid.



Combining the equations (conservation of energy density), with H(t) = ZJ(% we have

P;
éi+3H(Q?+—2> =0
c

such that, we have

Qi(t) _ Qi,Oa_S(l—Hui)

where we have the equation state,
P; = w;p;c®

We often, define the ratios of density to the critical density, gt = 31;:9 , such that we define

B 0i(t) - 8mGoi(t)
Ql(t)_ Ocrit N 3H2(t)

such that, we have the evolution,
Qi(t) = Qio(1 + 2)30+w)
Thereby, the Hubble equation simplifies, as
H(t) = Hg [Qumo(1+2)> + Q4 + Qy0(1 + 2)*]

where the universe had initially radiation dominated (£2,), then matter dominated (Q,), to
currently, A dominated (2,).

Matter Perturbations

General Perturbations
We have the metric,

ds® = (Gap + 0gap)da® da”
where, we have the Einstein equation,

= &G

Glap+ 8Gag = = (Tap + 3Tes)

We assume small perturbations, since the equations are extremely non-linear.

Thereby, we work with non relativistic matter perturbations, with scales smaller than ﬁ such
that we can work in the Newtonian limit for the perturbations. Similar analyses do not work for

radiation perturbations.



In physical coordinates (t,r) the fluid and gravity system for non-relativistic matter is

o(t,r) + Ve(et, r)u(t,r)) =0

a(t, ) + (ult, ) - V,)ult, 7) = —V,d(t, ) — LT
o(t, )
3P, (t)

V78 (t,7) = 47G | o(t,7) + Bm(t) + —

where o(t, r) is the fluid density, and u(¢, r) is the proper velocity of the fluid.

Let us assume dark matter being cold and non relativistic, under the ACDM model, using
observational and cosmological studies. where, we have the perturbed potential ® and the
pressure P.

Expanding Universe

Firstly, to solve under the framework of the expanding universe, we define the proper/physical
coordinates r, in terms of the comoving coordinates x, as

and we define the density contrast §(t, x), as

3(t, x) = b
0

where we have averaged over the entire volume. Similarly, we can define the peculiar velocity,
subtracting the cosmological expansion velocity, as

olt,%) = alt) X = ult,x) ~ 207

and similarly, define the perturbed pressure p(t,x) = P — P and potential ¢(t,x) = ® — ®rrw.
This subtraction of effective background metric separates non-clustering components, where
dark energy is assumed to not cluster.

() Perturbative Fluid Equations

We have the transformation =(¢) = a(t)x(t), with u(¢, ) = a(t)x + v(¢, r) operators
7 a(t
6t|T:8t]X—|—8t\r (m) 8t|x (t§x Vx,andv (1t) X-

A. Continuity equation, transforms, as ¢(¢, r) + V,.(o(t, 7)u(t,r) = 0 being rewritten as,
8t x) — Dhx - Vyolt, X) + -5 Va(olt, 7)a(t)x + v(t, x)] = 0, such that, the expression



simplifies, thereby,

(k) + 3%9(@ )+ 5 V{0l 0t 30) =0

An interesting insight is for the static background field g, (t), we have the continuity
equation,

f(t)+ 35307 u(t) =
Now, for perturbations, o(t, x) = om(t)(1 + (¢, x)), such that, when we substitute, thereby,
6(ta X) + mvx [(1 + 5(ta X))’U(t, X)] + Qm( ) a(t) ( ) =0

-

B. Euler equation, (¢, r) + (u(t,r) - V,)u(t,r) = =V, ®(¢t,r) — V;g’(:;’)r) . The
transformation of (u(¢,r) - V,)u(t,r) as

2 (@)x +v(t,x)) - Vx)(alt)x + v(t, x)) = 5 [a*(t)x + a(t) (x - Vx)o(t, x) + a(t)v + (v
, and thus combining, the left hand side is,

(ax + ot x) — L8x — M (x- Va)w(t,x)) + 27 [2Ox + ) (x - Ta)o(t x) + alt)ol
. This simplifies, as a(t)x + o(t, x) + ) v(t, x) + a(l—t)(v(t, x) - Vy)v(t, x). The right hand

(t)
— 27 Vx®(t,x) — 55, VaP(t, x). Thereby, the entire equation, is

side transforms as

VXP(ta X)

. a(t) 1 ; 1
b(t,x) + —v(t X) + == (v(t, X) - Va)olt, X) + d(t)x = ——= Vx®(t, x) — a(t)o(t, x)

a(t) a(t) a(t)
Now, for perturbations, we use the Friedmann equation, we note V,P(t,x) = Vyp(t, X),
and V,®(t,x) = Vxo(t,x) + VxPrrw (¢, X), Where V,®rrw(t, x) = a(t)x, and hence, we
have

: a(t) 1 1 Vxp(t x)
t — ot ——(v(t,x) - t,x) = —— t,x) — —

’U( 7X) + a(t) ’U( 7X) + a(t) (’U( 7X) VX)'U( 7X) a(t) VX¢( X) a(t)g(l + J(t,x))
C. Poisson equation, V2&(t,r) = 4nG [g(t, ) + 0m(t) + 3156“;(” ] , we have the simple
transformation,

3P, (t
VE8(t,x) = 47Ga%(t) | oft,X) + Bu(t) + o)

and the perturbation, is heavily simplified, as Viq)(t, X) = Vigb(t, x) + V;QFRW(t, X))
where Vi@FRw(t, X = 47rGa2(t) [@ + @m(t) + %ﬁ], thereby,

V2¢(t, x) = 4nGga®(t)d(t, X)



Substituting the perturbations, in the fluid equations, we have

5(t,x) + %vx (1 + 6(t, %))o(t, X)] = 0

. a(t) 1 1
v(t, x) + Ev(t,x) + %(v(t,x) - Vy)v(t,x) = —wvxqﬁ(t, x) —

V360, = 45G20° ()50,

pr(ta X)
(t)o(1 +6(t,x))

We can separate into relevant quantities, for dark matter and baryons, with the entire set of
coupled equations, as

5t %) + — Vs, [(1 4 82 (t, 30 )va(t,x)] = 0

a(t)
, a(t) 1 1
vA(ta X) + va(t X) + %(UA(ta X) : vx)vA(t> X) - a(t) vx¢(ta X)
V31 X) = 47G(0) (209 (430 + Bunlt:30] = 5 b (D000 (1) + Dot )]
(%) + ﬁvx (1 + Ban(t, X)) 0t X)) = 0

V xPu(t, X)

. af) L on(t,x) - Vi)om(tx) = ——— -
Om(t:20) gy Pl X) + gy (om0 Vadom(l20) = = ey V) = e 5,6 20)

We note that the perturbed gravitational potential ¢(¢, ) arises from dark matter and baryonic
matter, and we have the respective densities.

We have the approximation, Q, ~ 6Q,,, and §, = J,,, such that we have the gravitational
potential sourced by dark matter, and baryons moving in the field of dark matter.

Linear Perturbations

We have, in first order of perturbations, for dark matter, which are decoupled completely from
baryonic matter, as

SA(ta X) + %vva(t X) =0

'bA(t7X) + wvf\(ta X) - TN

a(t)
3
Vie(t,x) =

to independently, have the equation for dark matter, as

) a(t) .  3HE -
(sA(t,X) + 2%51\ = W(Ot)



. 2
For a flat universe, we have a(t) — 1, such that, d,(¢,x) = 31;[0 024,004(t,x), leading to
exponential solutions in the density contrast, such that 6, (¢, x) ~ Aexp(t) + Bexp(—t) such

that the exponential decay dies at large time scales, such that we have an effective
gravitational instability, such that small perturbations are exponentially blown up.

We have variable separation, such that
da(t,x) = D(t) f(x)

such that we have the evolution equation,

: at)
D(t) + 2a_t)D = %0

3H2 _
®_Qx0D(2)

which has solution D(¢t) < H(a(t)), which is not interesting, in an expanding universe. The other
solution, can be found by the method of Wronskian, such that, in the limit A — 0, such that we
have D(¢) «x a(t). We assume A — 0 further, such that, we have the generic solution,

da(t,x) = D+(a(t))f(x), such that we normalize, D (a(to)) = 1.

The peculiar velocity, can be found out from the continuity equation, as

va(t,x) o a(t)D+(a(t)) o< a(t) D+ (a(t))H(a(t)) F (a(t))

such that, we have

such that, we have the relation F(z) ~ Q; ,(z).

Further, we can substitute the perturbed potential sourced primarily by dark matter, into the
baryonic matter field, as,

. 2 2
. a(t) - 3H
5m 12 2_6111 L, —\ 2(Sm t - —OQ 6m L
(t,x) + 2~ (t, x) ( ) VOm(t: X) 207 (0) (t: x)

and we also require an equation of state, for complete set of equations. We decompose into
Fourier modes, as

/ ’X exp( ZkX)
Sty x) = 21) / &k 6 (t, k) exp(ik - x)
such that, we have,
. a(t) a(t)\? , _ 3H}
6m(t,k)+2a(t) om(t, k) + (a t)) k“om(t, k) = 203t )QAoé m(t, k)



where we assume for small k, the linearized equation for baryonic density contrast 6, (¢, k),
sourced by both its own gravity and that of dark matter, is

St k) + 2205 ke - af(zt)

a(t) Vi(sm(t? k) = 47TG(§A(t)6A(t’ k) + ém(t)(sm(ta k))

Here, ¢ = g’% is the square of the sound speed of the baryonic fluid. Transforming to Fourier

space by replacing V2 with —k?, where k is the comoving wavenumber, we get the equation for
a single mode 6, (¢, k), as

" a(t) . c2k?

Om(t, k) +2—=0m(t, k 5

(1,10 + 255 Bt ) +

This equation beautifully illustrates the cosmic battle between gravity and pressure. The Jeans
scale is the critical scale that separates these two regimes. For a purely baryonic fluid, the
Jeans wavenumber, k 7, is defined as the scale where baryonic self-gravity is balanced by
pressure given as

0,2(t) 6m(t’ k) - 47TG(§A(t)5A(t7 k) + ém(t)(sm(t’ k))

21,2

cik
4mGon(t) ~ — L
T~ 2
Self-gravity

Pressure

2
The corresponding comoving Jeans length is x7 ~ 1/kz. Using om(t) = Qm,o%a_?’, we can
write
3H? _

2
s

Ky =

c 2ac?

Perturbations with k < ks (scales larger than the Jeans length) are dominated by gravity and
will grow, while those with & > k7 (smaller scales) are dominated by pressure, causing them to
oscillate as sound waves (Baryon Acoustic Oscillations) instead of collapsing.

We assume that the baryonic perturbations evolve with the dark matter perturbations, which
grow as da(t, k) = D (t)da,i(k). This implies the time-derivative part of the baryonic equation
can be related to the overall growth of structure

ot ) + 2%&1@, k) ~ 47G(2a(t) + 2n(t))dm(t, k)

Substituting this into the full baryonic equation, we have
21,2
S

a’(t)

47G (oA (t) + om(t))om(t, k) + Om(t, k) =~ AnG(oA(t)0A(t, k) + om(t)dm(t, k))

which can be simplified as,



2.2
<k

(47G2r(0) + (1)) 30 = 47GEr BB (1. 1

Solving for 6, (¢, k), gives the relation

5A(t, k)

— 2 2f2
47TGQA(t) + a’(t) 1+ 47rcG§Aa2

This expression shows how baryonic perturbations are suppressed relative to dark matter
perturbations on small scales. The effective scale for this suppression depends on the dark
matter density g,. Thereby, we have

Ia(t, k)

om(t, k) = H—W

where x% = 1/k% is defined using the baryonic density om(t).



L01.02 Probing Large Scale Structure

Power spectrum

From our separated variables, é ~ §,(t,x) = D(t) f(x), we have the power spectrum
P(k) ~ [d(t — to, k)|?

such that, we have P moraial ¢ k™% where n, ~ 1 as the power law variation.

L
104} :
=y
A
_ —
’g 103 L A J Pn(k) contains information
= / = on the primordial fluc-
l:f —— \}\I tuations and subsequent
- 102k | evolution
=
Q“E
#  Planck TT
Planck EE
10t | H+  Planck ¢¢
; DES Y1 cosmic shear
{ SDSS DR7LRG
{ BOSS DR9 Ly-a forest
10 103 102 10t 10°
large scales Wavenumber & [ Mpc™!] small scales

At low k, there is a deviation from observed behavior, because assumptions of matter
dominated epoch fails, and length scales grows greater than HLO

In the radiation dominated era, we have

. a(t) . V2 k%
29—~ =
o(t,x) + a(®) a(t, x) 20 a2
where we have the radiation dominated era, (¢, x) — 6,(t, x), such that, we input the radiation
pressure and solve, to have d,(t, x) ~ Ina(t), thereby, the gravitational instability does not exist.

Gravitational Instability is an extremely rare case of matter dominated universe, at late times,
for smaller spatial separations. Perturbations exist inside Hubble radius only for the matter

dominated case. Evolution of Hubble radius ~ HLO The turnover exists, when the scale is in
Qm,O

matter dominated era, reaches the Hubble radius, such that, we have k ~ -
vy




We can formally, write the power spectral density
P(k) = Ak™T?(k)

where the power law behavior is truncated by the transfer function T'(k) which captures the
change of scales and turnover into matter dominated from radiation dominated, and A, is the
normalization amplitude.

N-Body Simulations

We use tracers in the spacetime, through a series of

oc(t,r) = Y _mép(r —ri(t))

such that in comoving coordinates, we have,

oe(t,x) = a:Zt) ) dn(x — xi(t)

i

Thereby, the density contrast, is
1
8(t,x) = — > dp(x — xi(t)) — 1

where m = % Further, for the velocity, we have

2 Pop(r —7i(t))
2. 0p(r —7i(t))

where we have 7 = a(t)x + a(t)x, such that, we have,

u(t,r) =

B @r > X0p(x — xi(t))
u(t,x) = a(t) (x) + alt > 0p(x — xi(t))
where, we shall define,
o(t, ) = alt) > x0p(x — xi(t))

22 6p(x — xi(t))

Substituting the above in Euler's equation, we have the effective Newton's Il Law,

a(t)

(0) + 25 6(8) = — 3 Txdlx)
Rewriting, we have v;(t) = a(t)x;(t), and the effective equation
SN O W B
vl(t) - a(t) 1(t) az(t) VX¢(XZ)



where we have to specify the evolution of ¢ through the Poisson's equation,

3H?
qu = Qf 065( ’X)
2a(t)
which are completely non-linear, where we have the solutions in terms of the Green's function,
3H? de(t, x') g
o(t,x) = ——OQs,O/dg-”f' : == Z
8mal(t) x—x'|  alt !x vd
Linear Analysis
Define a new potential,
2 a(t
P(t,x) = &) o(t, x)

3H;Q¢o D (a(t))

from the earlier potential ¢(¢, x), such that, in the linear case, ¥(¢, x) is constant, through
evolution, such that ¥ (¢, x) = ¥o(x)-

Substituting for the velocity equation,

a(t) 3H2D., (a(t))
=0

Qe oV ¥o(xi)

Using our relation, v;(t) = a(t)D (a(t))u:(t). On solving, we have

vi(t) = —a(t) D+ (a(t)) V2 ¥ (x:)

such that we have a linear constant evolution, with a proxy time D_ (a(t)), we have
xi = qi — D1 (a(t))VxTo(xi)- On a variable transformation, by first order perturbation, we have
Vx%o(xi) = Vq¥%0(gq;), where the Lagrange transformation leads to,

x(9) = g — D+(a(t))Vq¥o(q)

This is an effective field equation, and motion along the tracer particle, termed as the
Zel'dovich approximation. Accurate even in some non-linear cases.

Under the transformation, we have conservation,

0¢(t, x(t, @) [a® (t)d*x] = 0¢(t, @)[ad(t)dq]

such that, we have the relation through the Jacobian J(q, x(q)) = L. 48

OqP ?
aj  oe(t, x(t,q))
l

a*(t) |J(a,x(q))

0¢(t, q) =



Hence, the density functional, in first order, is

Y3 43 2°v
a (t) ‘50‘[3 — DAa(t))ﬁq%l‘
where we have the deformation tensor, 3;;;(;) . In linear case, we approximate, as

oc(t,0) = gy 00(@) [1+ D a(t) Vo)

We express the eigenvalues of the deformation tensor, %, as A\, A\, and As, such that
A1 > A2 > )3, such that, we note
a; 00(q)

0¢(t,q) = a3(t) [1 — Do (a(t))M1(q)] [1 — Dy(a(t))A2(q)] [1 — Do (a(t))A3(q)]

where we have the behavior dependent on the eigenvalues. In the principle direction of the
largest eigenvalue \;, we have pancake structures, further plane clustering produces filaments,
and we have generic halos.

Spherical Collapse

For the non linear spherically symmetric collapse, we have

Xi(t) = 1;((;)) ;;_(:)Qi

such that, we have q; = %’, and we can substitute in the evolutionary equation

X X a*(t)
to arrive at
. GM  47G [ _ 3P ax GM N

which shows an effective repulsive effect due to gravity.

We can assume A ~ 0 in the matter dominated universe, such that we set the boundary
conditions, a(t) = ag, and have a shell expanding with Hubble radius, with Ry ~ HyR,, such
that,

1 3M 2GM a3(t)

= @ TR0~ ol B




For matter dominated, we have a(t) ¢7, such that, %(% ~ <. Energy condition, required is

GM
E=—
R

50<0
0

such that we need excess matter density, for matter collapse.

Since we have the energy relation,

1., GM
E=_-R - 222
2 R

we can explicitly parameterize, R = A(1 — cosf) and t = B(f — sin §), where it can be derived

that, A = % and B = ( ‘GE]‘gg , such that we have the non linear density contrast,
2 2

- M
%TK'A3(1*COS 0)3
S S
6mG B?(0—sin 6)?

(6 — sin §)?

1= ke
(1 — cos0)?

9
5NL: —125 —1

R

where we use A% = GM B?, which is independent of the energy, thereby, the collapse is
possible independent of energy, when there exists a turnover at maximum R.

For a completely linear theory, we expect no collapse, thereby, we expand ¢t — 0, § — 0, such

2
that, we have the linear density contrast, () ~ 32—%2 which can be written, as 6, (¢) ~ 55 (&£)7,

which is reasonable given matter dominated universe. Collapse exists, in a linear excess of the
density contrast.
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We can apply the virial theorem at collapse, such that the virial overdentiy §;, is evaluated by
noting the virial radius is half the radius at turnover, R.;, = A, such that, we have 6,;, = 1872 — 1



L02.01 Probing Large Scale Structure

Statistical Description

o(x) as the realization from the random field ensemble o, (x). We have the ensemble average
for a point x;, such that

1 Nensem ble
(o(xi)) = N Q(a)(Xi)

ensemble T

For a homogeneous universe, we need the ensemble average to be independent of ;, such
that, we have

(e(xi)) = (o)

Similar to the Ergodic Hypothesis in statistical mechanics, we now take the volume average,
|4 1 3.7 !
0@ (X) = 3 / d’z’ o) (x + X')
14

Thereby,

1 1
(Vow(x)) = —/ &’z o) (X + X)) = —/ d*z’ (o@)(x + X)) = (o)
Vv Vv
as an effective unbiased estimator.

For the effective estimator, we need the dispersion,

([Vew) - (@]") =0

V—oo

which can be shown by noting that, at large scales, for the volume averaged elements, we have
an effective drop in correlation. Thus, at some specific scale, we have negligible dispersion.

We have, at large volumes,

lim Vo) (x) =2= (e)

V—ooo

as the background fluctuation field, spatially independent. Similarly, the density contrast is

) = 22

(o)
with (3(x)) = 6 = 0.



Two-Point Correlation Function

We represent the density field by effective tracers,
Nt

ot(x) =mr Z dp(x — xi)
=1

with the volume average,
1 s N
(er(x)) = o7 = mr 37 /d%' Z5D(X —Xi) = mT7T = mrny
i=1

For a point xx, the probability of finding a point in 6V, is given by,

m TOIV) o en) g
oV —0 mT V-0 mT

Further, the probability of finding a point in §V; and §V», at points x1, x2, IS

. (oT(x1)8V10T(x2)8V2) . n3
Pra(xi,xz) =  lim z im0 22 (et(x1)eT(x2))

such that, we can re-express, as

Pi2(x1,X2) = ﬁ-2|- 14 &r(xa, x2)]0V16Va

where we have the two-point correlation function, given as

(oT(x1)eT(x2))

—1
s

ET(x1,x2) =

which is also given in terms of the density contrast, as

§r(x1, x2) = (61(x1)d7(x2))

For the tracers, we have

i=1 j=1

Nt Ny
(et(x1)et(x2)) = <mT Y dn(x1 —xi)mt Y dp(x: — Xj)>

=m3 <ZT ZT‘SD(XI —Xi)0p(x2 — Xj)> +mi <ZT ZT(SD(Xl —xi)dp(x2 — X;)

i—1 i=j i=1 i)
= 0% +m}(op(x1 — x2))

Hence, the two-point correlation is,

;



(or(x1)ot(x2)) 1— L5D(X1 - X2)
& &

5T(X17 XZ) =

where we have neglected the contribution from shot noise, and considered the relative terms.

We now impose homogeneity of the universe to constrain £1(x1, x2) = ét(x1 — x2), as a
function of the relative distance. Further, spatial isotropy implies, £1(x1,x2) = &t(Ix1 — xz2|),
removing the angular and directional dependence.

Fourier Space

We have the transformation,

5r(k) = / &z 51(x) exp(—ik - x)

with the constraint 6%.(k) = dr(—k), since dr(x) is real. The ensemble average for ér(k), can be
seen as

(67 (k)o5(K')) = </d3:1: d1(x) exp(—ik - x) - /d3m' 5t(x') exp(ik’ - x')>
which can be simplified, as

(07 (k)or(K')) = /d3w d’z’ (51(x)o1(x)) exp(—ilk - x — k- x'])
&r(ox’)

— [ en - x)exp(-ilk-x - kX))
By change of variables, we arrive at,
(520053 (k)) = 2160k — ) [ &y exp(ik - y)ér(w)
Define the Power spectrum, such that
Pr(k) = [ d éx(0) exp(~ike )
such that, we have the correlation function Fourier transform. We note,

(d7(K)o7(K')) = (2m)*6p(k — k') Pr(x)

By isotropy, we simplify the power spectral density, as

Pr(k) = / &z £1(|x]) exp(—ik - x)

* sin kx
= | dzd4nz’
/0 z dmz” &1 () =




thus, the power spectral density Pr(k) = Pr(z). Similarly, the correlation function,

trxg = [ 9 SHO i
T = o k 272 kx

where AZ(k) = k*Pr(k) is the dimensionless power spectrum, such that it captures the
behavior of the effective power in the correlation function, in logarithmic bins of dlnk = 4=,

For the effective tracers, we have the power spectrum given as, the normalized power spectrum
and the contribution arising from shot noise.

Angular Projections

For a comoving distance x(z), subtending an effective solid angle 2, in a small volume §V, we
have

(2) = C/z dz'
X o H(Z)
such that, the volume element is §V = x2dxdS.

We have the mass, §Mt = o1(x)dV = o1(x, Q)x2dxdS?, where we have the projected density
on the angular space. Thereby, at an solid angle, we have,

§M+

ox
_ _ 2 Q) = 22 Q
o1l 7 /dxx ot(x, Q) /dz 3, X ot(x, )

( Spherical Harmonics

Further, we expand the density contrast in terms of effective spherical harmonics,

The coefficients ay,, of a function expanded in spherical harmonics are found by projecting

the function onto the corresponding spherical harmonic basis function Y,,,(2). This is done
using the orthogonality property of the spherical harmonics. The expansion is given by

00 L
5T‘Q - Z Z almnm(ﬂ)

£=0 m=—/

The coefficients are thus calculated as
Qg = /dQ 1l aYpm ()

where the integral is over the entire solid angle.



We now substitute the definition of the projected density contrast,
5tla = [ dxx*S(x)ét(x, ), into the expression for ag,,

om= [[a0] [~ axx?5008r00 )| Vi@

By swapping the order of integration, we arrive at the expression for a,,, in terms of the
matter density contrast é1(x), where the position vector is x = x,

aim = [ axx*S00) [ dftdr6 )Y @)
0
This is the expression for the coefficients in real space.

Let's express the matter density contrast é7(x) in terms of its Fourier transform d7(k), as

3 ~
oT(x) = / %&(k) exp{ik - x}

We use the Rayleigh plane wave expansion for exp{ik - x} in terms of spherical Bessel
functions j, and spherical harmonics Y, given by,

exp{ik - x} = 47{) Z i i (K) Vi (£) Y gy ()
=0 m/'=—/
Substituting this into our expression for a, with x = sz gives

00 R 3 , R R
am :/0 dxxzs(x)/dﬂ [/ (;l ]; 5T( ) (4772iejé'(kX)Yf'm’(Q)Y;m'(k)>

'm!

Y ()

Rearranging the integrals and sums, we have

d3k A N

o = [ s [MZ i Vi / dx*S(x)je (k) ( [ wmfmmm(m)]
£'m/!

The inner integral over the solid angle dQ is simplified by the orthogonality relation

fdfl YgtmI(Q)Ye;l(fl) = 040 0mm. This collapses the sum over ¢ and m' to a single term

where ¢/ = £ and m’ = m. Thereby,

o= [ (dim) 4mit¥ ) [ ol i)

2m)3

Defining a radial transfer function A, (k) = [ dxx2S(x)j.(kx), the final expression for the
coefficient is

oum =i (jﬁ’j S (k) ARV ()



The angular power spectrum C, is defined from the two-point correlation function of the
harmonic coefficients

<a€ma’2’m’> = Cy640' O
where the angle brackets (-) denote an ensemble average.
We use the Fourier space expression for ag,,,,

aom = 4mit / %ST(k)Ag(k)Y};(E)

and the complex conjugate,

d3k' Sk (1.1 / 7!
a1 (KA (K Yo ()

azm/ = 47“(—7/)6//\

The expectation value is then,

3 31 _ . R
(aenim) = (4mitY [ 255 [ eI ) AR) Mo (Yo (Ve ()

The correlation of the Fourier modes of the density contrast defines the matter power
spectrum P(k), as defined earlier,

(31 (k)7 (K")) = (2m)°P(k)6®) (k — k')

where §®) is the three-dimensional Dirac delta function. Substituting this into our
expression,

3 ~ ~
(aenim) = ()i [ PUIAR A (Y (B Yo ()

The integral over k' was eliminated by the Dirac delta function, which sets k' = k.

We now express the integral over d3k in spherical coordinates, d3k = k2dkdk, thereby,

E;*:;z [T R PO AR A [ a0 Yo ()

<aﬁma’;’m’> =

Using the orthogonality of spherical harmonics, fdfc Y{;L(I})wmf(lé) = 800 Ommy, the
expression simplifies to

1672

(amapm) = 2

A YT / k2dk P(k)Ao(k)Ap (k)
0

The Kronecker delta §,, ensures that the term is non-zero only when £ = ¢, which makes



the factor i*¢ = i® = 1 and Ay (k) = A(k). We have,

<a’5ma2’m’> = 3(sff’(smm’/v k*dk P(k)[AZ(k)]Z
Q 0

By comparing this result with the definition (asmaj, ) = C¢durdmny, We can identify the
angular power spectrum Cy,

w 2
0

Cp= % /0 N k*dk P(k) [ / dx xS (x)je(kx)

When we have redshift information through a selection function, we have

otla = / ax x2S(x)er(x, )

with appropriate normalization for the selection function

/ dx x*S(x) =1
For the projected correlation function, we have

(oT|,07|0,)

—1
il

wT‘Ql7Q$ -

where the average of the projected function is equal to the average of the density function.
Evaluating it, we have,

1
wtl,08 = §—2</dX1 X3S (x1)et(x1, Q1) - /dX2 X%S(Xz)QT(X2792)> -1
T

where we can use explicit assumption of flat space, by approximating the relative vector, as

X12 = \/X?er% — 2x1X2 €080 ~ X1 — X2

such that we can simplify extensively.
Smoothed Cosmic Fields
Smoothed density field,
srlx() = [ @y o1 @)Wty - %)

with an appropriate window function W for a manifold X.



We have the convolution with the Window function, being simplified as a product in the Fourier
space as

or|x(k) = o1(k)Wx(—k)
We have the ensemble average (dt|x) = 0, and (62| x) relating the power spectral density, as
d*k ~
631x) = [ Gy PrITx(E)

If we have a Gaussian uncertainty smoothening, we have

Z exp

where we normalize the Gaussian, with the expression for the total number of tracers in the
observed volume giving pt, such that,

1 Ixz Ixi —x°|

/ d*x ot(x) = pr

thereby, giving us,

ot(x) = Z exp

(27mx 2‘7

X

The correlation function, and the power spectrum, due to the convolution of the Gaussian
windowing, are suppressed by the Gaussian noise, by the exponential factor exp(—aikz),
where the suppression is large at large k which corresponds to smaller scales.



L03.01 Probing Large Scale Structures
Simulations

Gaussian Field

For N points, @1, x2,...,x,, We have d1(x) — o1, fori =1,2,...,n. We have the probability
distribution,
P(d11,0 6T.n) ! [ 1%5 C; 6 ]
T,1,0T2,---90Tn) =~ 7% 1 XP|—7% T,V OT,j5
(2m)7|C|* 2464

is a linear, implied Gaussian random field, with C;; = (d7,:67 ;) is the covariance matrix, given
equivalently by the two-point correlation function, C;; = £(x;, ;). For a Gaussian random field,
the higher order moments are completely determined by the two-point correlation function, and
the mean.

We have the the individual probability distributions, for the initial densities, given by,

P(oT) = = exp [—lﬁ]

V2rotr 2 2‘7%

where o2 = (§2) as the variance, which shows the power spectrum, as an effective diagonal
covariance matrix. We further, perform the smoothing through appropriate window functions,
where we realize that, the windowed density function, is a weighted sum of Gaussian random
densities, such that, we have

1 1 0%
P(otx) = X ]

] e

Further, in the frequency domain, we realize the independence of different wave modes, such
that the power spectrum is diagonal, to have

(6(k1)d(k2)) o< 6p(k1 + k2)
Linearly Extrapolated Field

We can expand the complete non-linear spectrum in terms of the linear Gaussian random
density field as,

JT(za k’) =D, (a(z))5T(z =0, k)

51(k)



where é1(k) is the Gaussian field, with the encapsulation of the transfer function T'(k). We have
the power spectral density and the variance, given by the evolution,

PT(Z, k) = Da_(z)Pprlm(k)T2(k)
Pr(k)
o1(2,X) = D% (2)o7(X)

with the variance dependent on the window function used on the manifold.

Halos

Consider early times, with minimal perturbations, z;,; > 1, such that, we have
6T(zini7 13) - PT(zinia w)

which we further smoothen with a window function W (), such that, we have
07 x (%miy ) = /d3y 071 (2ini, ® + y) Wx(y)

which we can evolve to present time, such that,

D (a(2))

m5T,X(zini, 33)

5T,X(Za :I}) =

where we can prescribe an effective mass for the region of radius X, with a spherical window
function, such that

- 4
M = 3 (ainiX)® 07 (2ini)

where a®ot x(2mi) gives the current density field, gt(z). We have the critical density for
spherical collapse, as d.:it, thereby, we have densities, with larger overdensity to have spherical
collapse, as

(ST,X(Z, 213) > 5crit

such that, we note the ensemble fraction where we observe collapse.

We can find the fraction of mass within collapsed halos of mass M > M, at z, given by the
Gaussian cumulative distribution function,

~ 1 0
Peotipse 5 M = M) = o) J,, 5o o ["—d]
T ) crit

where we evaluate for overdense regions where we expect spherical collapse. The probability



can be evaluated by the complementary erfc function, such that,

~ 1 5 rit 1 5C1‘it (Z)
Peoltapse(z, M > M) = erfc c = —erfc [
’ V201(2 X) 2071(z, X) 2 or(X)
where we have defined §qit(2) = Df(mz 7 as the effective critical density at current redshift. Note
that, due to not being normalized, we have
1 it (z) 1
hm 'Pcouapse(z M > M) = ]\141510 Eerfc o (X) -3
N——
ot(M)

which can be fixed. This relates to the Press-Schechter relation.

We have the mass function a" as the number density over mass of halo states, given as

~ 1 > on
Pcollapse(Z,M > M) = ET(zmi) /M dM' M'—— M’

where we can derive analytically, the expression for the mass function, as

5crit(z) exp [ 1 521‘11:( )]
o1 (M) 2 o1 (M)

adT(M)
oM

on |2 o7(2ni)
oM V71 M

where we realize that the derivation required Linear Perturbation theory, Spherical collapse, and
dynamics of random Gaussian field.

Criticality
We can rewrite the expression of the mass function,

dlno(M)
oM

on 2 o1(zmi)
oM Vm M

where p = Stz

or(M)

Let M., such that o1(M.) = dait(2), Such that, we have for M < M., we have a power law
behavior, and for M > M., we have an exponential cutoff, thatis v < 1 and v > 1 respectively.

The mass function integrates to the total number of halos in the universe, where we assume
collisionless mass function. Here all properties of the halos are assumed to be dependent solely



on the mass. Similar analysis for ellipsoidal collapse is Sheth-Tormen mass function.
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L03.02 Probing Large Scale Structure

Statistics and Correlations

Clustering

We recall, the effective mass function with the number of halos per unit comoving volume,
concerning per unit mass, g—ﬂ’} determined as the average

_ on
m(2) = oar
where we can define the density contrast,
’I’LM(ZB, Z)
on(e,M,z) = ——=—1
H(x z) ont (2)

We can explain clustering for overdense regions by understanding the peak-background spilit,
such that we have smaller push for short wavelength modes, superimposed on longer
wavelength modes, for regions of positive density contrast. Formally,

-+
v exp —EV

dlnor(M)
oM

2 o1(%ni
’I’LM(ZB,Z) = ; 5\4 )

where we have

Y — Oerit — 5T(w)
D (a(2))or(M)

We now expand, for lower orders,

ony(x, 2)

ny (e, 2) = ny(e, z)|5T(m):0 W or(z) + 0(5%(“’))

51‘(%):0

o1 (x) + O(87())
d1(x)=0

&(w)] O (=)

ony(x,2) Ov
Ov 961 (x)
v?—1

5crit

Thereby, the density contrast, for halos at a particular redshift, is given by,

v —1

5crit

on(z, M) = o1()

where we have the definition, b(M) = vL as the linear halo bias. Thereby, the correlation

écrit




function,
En(e1 — 2| My, My) = (0u(z1, M1)ou(z1, Ma)) = b(M1)b(M2)E1 (21 — x2)
If we were to look at the correlation density profile for masses M > My, we have,

fl\(;-fomm dM; 8M memdM2 DM, —EH(x1 — x2| M1, M>)

En(z1 — @2 Mmin) = >
mem dMl W Mmm dM2 8%2

where we have weighted by the explicit mass profile through the mass function. We can
simplify, as

mem dM; 22 -b M1 fM dM; § on_ 235 b(M2)

00 871
mem dM]‘ 8M Mmin dM2 6M2

En(zy — @2 M) = Er(my — @3) = B°(Mypin)é7 (21 — )

where

memdM St b( )

fM min

The physical picture is that clustering is excessive in regions of overdensity, and voids remain
greatly deprived of halos. The bias factors the matter tracer densities over the halo density,
which provokes higher correlation at greater masses.

ﬁ(Mmin) -

Gravitational Wave Events

Rates and Numericals

We compute the number of mergers per chirp mass d M, per unit stellar mass dM,, given by

deerge (Ma Z)
dMdM,

Noting the merger formation rate ¥ = M,, we have the number of mergers per dM, per unit
time, as

deerge(M’ Z)
dMdM,

Thereby, the number of mergers per d M, per unit time, integrating over the halo mass rate, per
unit comoving volume, in the source frame,

/d\I/ \I’deerge(M, z) an(M, Z) oM

dMdM, oM 0¥
We now, convert from redshift to the comving volume, % = 47rx2(z)%, where % = a(c—z) is the
transformation. Accounting for time dilation due to gravitational redshift, we have, the



transferred rate of mergers per unit dM in observer's frame per dz since we have converted
from comoving volume, to arrive at

1 ady /d\II\deNmerge(Ma Z) 5n(M,z) oM
1+2z dz dMdM, oM 0¥

Further crucial considerations are to include the delay time between the formation of a star, due
to the age of a star, formation of a common envelope, both of which are minute compared to
cosmic scales, and the effective merger time scale, that can be extensively long. Accounting for
the time delay due to a probability distribution,

dN, merge 1 d_V
dtopsdMdz 1+ 2z dz

dNmerge (M, 2) on(M, z)
dMdM, oM

deelay p(Tdelay) / dM ¥

where we have parametrically accounted for the time delay function.

Further, for clustering, we have,

deerge . 1 dV d ( )\I’(M ) deerge(M7 Z) Bn(M, Z)
dtopedMdzdM 1+ 2z dz | 7dcly PiTdelay 2T MM, oM

where we account for the bias with respect to given mass M, as

dN, merge

JdM b(M, z) Ttonsd Mdzd M

bGW (Z) = AN erge

f dM TtonedMdzd M

where we have weighted the bias due to halos, with the merger rate per unit chirp mass, per
unit observation time, in a range of redshift, for a halo mass bin.



L04.01 Probing Large Scale Structure
Gravitational Waves

Rates

Recap, we have the rate of mergers,

dNmerge 1 ay /d ( VO (M )deerge(M,z) on(M, z)
dtopedMdzdM 1+ 2z dz | &7dcly PiTdelay 2T A MADM, oM

where we must further select for SNR, the differences in redshift, timescales of halo formation
and star formation, and neglecting halo merger.

Neglecting these assumptions, we have the bias with respect to given mass M, as

deer e
JAM (M, 2) gr—iidnr
baw(z) = Noose

JaM Tt onedMdzdM

where we have weighted the bias due to halos, with the merger rate per unit chirp mass, per
unit observation time, in a range of redshift, for a halo mass bin.

Lensing

We must account for magnification bias, shear due to lensing. We have the effective
gravitational wave density spike due to density,

ZSource
5(()}b\?V ~ dow + (58 — 2)/ dz K(ZSourcea Z)(ST
0

S
where we have the convergence kernel IC, with the comoving source redshift zgource, and the
slope of the observed halo density s.

The power spectrum and correlation functions are additionally smoothened, due to smear in the
angular coordinates due to lensing.

Additional Effects

The presence of peculiar velocities affect the redshift of an object and hence the determination
of distances using the standard Hubble-Lemaitre law. The relation between comoving distance



and the cosmological redshift zcosmo, IS

H(z)

Zobs
X(ZCOSmo) = / dz
0

and the redshift arising from peculiar velocity is

14w /e .
= 1—wv,/c

where v, is the radial component of the peculiar velocity. The total redshift is
1+ zops = (1 + ZCosmo)(]- + Zp)

In case of non-relativistic velocities and small redshifts, the relation simplifies to

Hyr v,
Zobs & + c

which is valid only in the nearby universe and has to be modified for high redshifts.

We further have the notion of the redshift distance, related to the physical distance, by

v-T

A

s=7r-+ Ho r

which is derived from the Hubble-Lemaitre law. The object will seem nearer in the redshift
space when it is moving towards us compared to the Hubble expansion.

We have the effects of peculiar velocities, with large scale structures compressed in redshifted
space, while small scale structures are elongated, in a finger-of-God effect.



real space redshift space

L/

redshift

S

A

C
N

For a large radius within which the overdensity is small, the expansion of the mass shell is
decelerated but its peculiar velocity is still too small to compensate for the Hubble expansion. In
redshift space the mass shell will then appear squashed along the line-of-sight when observed
from a distance much larger than its size.

A mass shell with linear overdensity § ~ 1 is just turning around at the time it is observed, so its
peculiar infall velocity is exactly equal to the Hubble expansion velocity across its radius. In
redshift space this shell appears completely collapsed to an observer at large distance.



A mass shell which has already turned around has a peculiar infall velocity which exceeds the
Hubble expansion across its radius. If this infall velocity is less than twice the Hubble expansion
velocity, the shell appears flattened along the line-of-sight, but with the nearer side having
larger redshift distance than the farther side.

At smaller radii the peculiar infall velocities of collapsing shells are much larger than the
relevant Hubble velocites and are randomised by scattering effects. The structure then appears
to be elongated along the line-of-sight in redshift space (a *finger-of-God” pointing back to the
observer).

Density Contrast in the Redshift Space

It is usually the case that the scale of perturbations is much smaller than the distance from us.
In that case one can use the plane parallel approximation and construct a local Cartesian
coordinate system. We have,

Vy 4

s=7r-+
0

Using the conservation of mass (or equivalently the conservation of galaxy counts), we can
write,

Hence, the density contrasts, relate as,
(s) 3. _ 3
1+ 67 (s)]d’s = [1+ o1(r)]d°r
We relate the coordinate transformation by the Jacobian in the z component,

0s®
orp

1 Ov,

Hence,

1 +5$)(3)] = [1+é7(r)] (1 + Hig g::)

For the linear approximation, in first order,




We can now work in the Fourier space, to arrive at

(s) ik
7 (k) ~ 01(k) — v (k)

where S relates to the bias weighted by the form function. Define u; = Z—z

where 6 is the angle between k and the line of sight. Thereby, we have,

such that cos 6 = py,

8 (k) ~ &1 (k)[1+ B3]

which relates the density contrasts in the real and redshift spaces. The power spectra are
related, as

PO(k) ~ P(k)[1 + Bu2)?

showing that the effect of redshift space is to make the power spectrum anisotropic. This effect
at large scales is the Kaiser effect.



