
L01.01. Cosmography using Standard Sirens
Basics of Cosmology

Cosmological Principle (Large-Scale):

Fundamental Observers: Rphys = a(t)Rcom, comoving coordinates Rcom for initial observers at
t = t0, with the physical distance Rphys, scaling by a scale factor a(t).

Metric

Metric obeying Homogeneity & Isotropy:

ds2 = −c2dt2 + a2(t)dΣ2

with time set to proper time for fundamental observers. Isotropy implies conformal a(t) for the
spatial metric dΣ2. Foliate spacetime into time and homogeneous and isotropic slices Σt.

Embedding d dimension maximally symmetric surface in d + 1 dimension with a constraint

equation. dΣ2 =
d

∑
i=1

dx2
i + κ2dα2, where we transform for 3D, as α = R cos ( χ

R ),

x = R cos θ sin ( χ
R ), y = R sin θ sinϕ sin ( χ

R ), z = R sin θ cosϕ sin ( χ
R ), to get

dΣ2 =

with generalization

dΣ2 = dχ2 + f 2(χ)dΩ2

with

f(χ) =

Homogeneity: Invariance under translations
Fall in variance in matter overdensity when smoothened on radius R
Isotropy: Invariance under rotations
Constant temperature of CMBR in any direction
Time-Asymmetry: Evolution through time

⎧⎪⎨⎪⎩dχ2 + χ2 (dθ2 + sin2 θdϕ2) Flat Space

dχ2 + R2 sin2 ( χ

R
) (dθ2 + sin2 θdϕ2) Positive Curvature

dχ2 + R2 sinh2 ( χ

R
) (dθ2 + sin2 θdϕ2) Negative Curvature

⎧⎪⎨⎪⎩χ Flat Space

sin ( χ
R ) Positive Curvature

sinh ( χ
R ) Negative Curvature



Standard form of the FLRW metric,

ds2 = −c2dt2 + a2(t) [
dr2

1 − κr2
+ r2(dθ2 + sin2 θ dϕ2)]

Dynamics

Velocities v = dRphys

dt
= ȧ

a
Rphys + a(t) dRcom

dt , with cosmological recession velocity: ȧaRphys,
peculiar velocity: a(t) dRcom

dt
 which is short scales.

Hubble Law, v = H0d, overestimate of H0, expanding of the universe since ȧ > 0.

Redshift, ds2 = 0 for photons in an expanding universe, cδt = a(t)δχ, thereby, ∫
tr

te

cδt

a(t)
= ∫ δχ

to give the total distance traveled from emission at t = te to reception at t = tr. For photon

wavelength of cδt, we have ∫
tr+δtr

te+δte

cδt

a(t)
= ∫ δχ, thereby equating ∫

tr

te

cδt

a(t)
= ∫

tr+δtr

te+δte

cδt

a(t)
, we

have cδte
a(te)

− cδtr
a(tr)

= 0, thereby, the wavelengths,

λr

λe
= 1 + z =

a(tr)

a(te)

defined through the redshift z, ignoring peculiar velocities.

Distances



Angular distance

Relation between angles (solid angle) and physical size (physical area), related as

Dang = √ A

Ω
= √ 4πf 2(χ)a2(t)

4π
=

f(χ)

1 + z

where the area is of the 3-surface at constant time.

Luminosity Distance

Relation between luminosity of an object and the flux received by it,
Let us now consider the flux received from a distant source in the Universe, which has an
intrinsic bolometric luminosity Lbol integrated over all wavelengths, and per unit wavelength, we

have dLbol = LI(λ)dλ, where the intensity, averages as ∫ I(λ)dλ = 1.

Evaluating the number of photons emitted per unit wavelength λe, in a time δte at time of
emission te, given as

dN(λe) =
dLδte

hc/λe

= L
λe

hc
I(λe)dλeδte

For the light emitted by a sphere at coordinate χ, after time tr, the surface area is 4πa2(tr)f 2(χ)

, now at time tr, where we chose a(tr) = 1, and have the number of photons received per unit
wavelength λr, over the entire surface of the sphere, given as

dN(λr) = dNe(
λr

1 + z
) = L

λr

(1 + z)hc
I (

λr

1 + z
)

dλr

1 + z
δte

since the wavelength changes as time proceeds.
Thus the amount of energy that passes through the sphere in a unit time interval is given by

dNr(λr)

δtr

hc

λr
= L

1

(1 + z)
I (

λr

1 + z
)

dλr

1 + z

δte

δtr

The flux F(λr)dλr is the amount of energy received per unit time per unit area perpendicular to
the line of sight to the source. Thus F(λr)dλr should be equal to

F(λr)dλr =
dNr(λr)

δtr

hc

λr

1

4πf 2(χ)a2(tr)



which can be simplified as

The total bolometric flux is integrated over all wavelengths as

Hence the photons lose energy through the expansion of the universe, and we obtain the
effective luminosity distance, as,

Dlum(χ) =√
Lbol

4πF bol
= f(χ)(1 + z)

Cosmic Distance Ladder, with objects of similar luminosity. Radius of Earth through historical
shadow measurements at multiple places, Distance of moon based on lunar eclipse timings,
Distance to sun through half phase angle between Moon and Sun or through Venus transit
times, Distance to nearby stars, in terms of geometric parallax, all done sequentially, Distance
to galactic clusters, using VLBI of active Masers or detached eclipsing binaries.

Cepheid Standard Candles, Period Luminosity relation for Cepheid variables. Estimating flux
through oscillatory observations. Rapid oscillations.Type I and II Cepheids, error in Hubble
observations.

Fixing measurements through Type Ia Supernova Standard Candles, recalibration with Cepheid
variables. Cosmic Calibration.

F(λr)dλr =
dNr(λr)

δtr

hc

λr

1

4πf 2(χ)a2(tr)

=
L

(1 + z)
I (

λr

1 + z
)

dλr

1 + z

δte

δtr

1

4πf 2(χ)

=
L

(1 + z)2
I (

λr

1 + z
)dλr

δte

δtr

1

4πf 2(χ)

=
L

(1 + z)3
I (

λr

1 + z
)dλr

1

4πf 2(χ)

F
bol =∫ F(λr)dλr

=∫
L

(1 + z)3
I (

λr

1 + z
)

1

4πf 2(χ)
dλr

=∫ (LI (
λr

1 + z
)d

λr

1 + z
)

1

4πf 2(χ)(1 + z)2

=
Lbol

4πD2
lum(χ)



Friedmann Equations

General Relativity

Gμν = Rμν −
1

2
Rgμν =

8πG

c4
Tμν

which can be simplified, as G00 = ( ȧ
a )

2
+ 3 κc2

a2 , and Gij = − [2 ä
a + ( ȧ

a )
2

+ κc2

a2 ]a2γij where γij

is the metric of the homogeneous and isotropic 3-space, i.e., dΣ2 = γijdx
idxj.

For an ideal perfect fluid Tμν = (ϱc2 + p)uμuν + pc2gμν, which has T00 = ϱc4 and
Tij = p(t)c2a2γij, and equating the relevant quantities, we have,

[(
ȧ

a
)

2

+
κc2

a2
] =

8πGϱ

3

−[2
ä

a
+ (

ȧ

a
)

2

+
kc2

a2
] = 8πG

p

c2

Combining the above two equations, we have



ä

a
= −

4πG

3
(ϱ +

3p

c2
)

This shows that for energy density in the Universe with a non-negative pressure, the scale
factor a(t) cannot have positive acceleration.

Since the scale factor is a growth factor we are free to choose the normalization, such that
a(t0) = 1 at t = t0 present. H0 = ȧ

a
 at the current time acts as the initial condition for the

problem.

For spatially flat, we have

ϱcritical =
3H 2

0

8πG

and substituting in the general expression, we can rewrite as,

(
ȧ

a
)

2

= H 2
0 (

ϱ

ϱcritical
−

κc2

a2H 2
0

)

and thereby,

−
κc2

H 2
0

= (1 −
ϱ0

ϱcritical
) = Ωκ

where the criticality is understood as the density between closed and open universe. Thus, the
Friedmann equation is simplified, as

(
ȧ

a
)

2

= H 2
0 (

ϱ

ϱcritical
+

Ωκ

a2
)

For pmatter = 0, prad = ϱradc
2

3
, and relations ϱmatter ∝ a−3 and ϱrad ∝ a−4, such that the matter

density falls off, while the energy density of radiation changes due to the change in volume as
well as the change in energy that a photon undergoes when the Universe expands or contracts.

For the combined fluid densities with Ωmatter = ϱmatter

ϱcritical
, Ωrad = ϱrad

ϱcritical
, Ωw = ϱw

ϱcritical
 all defined at

t = t0, where Ωw denotes the dark energy pressure with pw = wϱc2, such that, we have the
combined equation as,

(
ȧ

a
)

2

= H 2
0 [Ωmata

−3 + Ωrada
−4 + Ωwa

−3(1+w) + Ωκa
−2] = H 2

0E
2(a)

where Ωκ = 1 − Ωmatter − Ωrad − Ωw. Computing a(t), thereby χ = dχ =
dt

a(t)
, thereby,

computing the age of the universe.



L02.01 Cosmography using GWs
Cosmic Microwave Background



Extremely isotropic emission, evidence of anisotropies at O(10−3) Kelvins.
Dipole corresponds to peculiar velocity with respect to CMB, due to Doppler shifts.
Fluctuations observed only at the level of 1 in 105, seed fluctuations in structure formation.
Smaller scale, sound propagation due to pressure waves. Photon fluctuation in baryon
potential wells. Density functional decomposition into a Fourier spectrum.

In the very early universe, we think a period of rapid expansion, called inflation , caused
these quantum fluctuations to be stretched into cosmic scales. These fluctuations in the
energy density imply fluctuations in the local gravitational potential. Regions of high
density generate potential wells. Regions of low density generate potential hills.
Sound waves stop oscillating at recombination when the baryons release the photons.
Modes that reach extrema of their oscillation (maximal compression or rarefaction in



potential wells) by recombination will carry enhanced temperature fluctuations.

Power spectral density can help constrain parameters in the Hubble dynamics, including Ωκ

, since the angular diameter changes.

Angular wavenumber, called a multipole ℓ, of the power spectrum is related to the inverse of
the angular scale.
Ratios of alternate peaks, comprising maximal rarefaction and maximal compression,
helping constrain cosmological parameters.



Hubble Tension

For ΛCDM universe, there is a discrepancy between Baseline standard candle results and CMB
inferences.

Expectation to resolve using gravitational waves.

Primer (Semi-Classical) on GW

Frequency Evolution

For two bodies of mass M and m, seperated from centre of mass by R and r, we have
Mω2R = GMm

(R+r)2  and mω2r = GMm
(R+r)2 , and we have the relation MR = mr, thereby, we arrive at

ω2 =
G(M + m)

(R + r)3

and the total energy Etot is,

Etot = −
1

2

GMm

R + r
= −

1

2

G
2
3 Mm

(M + m)
1
3

ω
2
3

The power Prad radiated is proportional to the quadropole moment Q, related to the square of



the moment of inertia I = mr2 + MR2, thereby, simplifying, we have,

I =
mM

m + M
(R + r)2

related to the reduced mass ratio μ = mM
m+M , and thereby,

Prad ∝
GI 2ω6

c3

and now noting the rate of change of total energy can be related as,

−
d

dt
Etot =

1

3
G

2
3

mM

(M + m)
1
3

ω− 1
3
dω

dt

and by the effective loss of energy, we have, Prad = − d
dtEtot, such that,

αG
m2M 2

(M + m)2
(
G(M + m)

ω2
)

4
3 ω6

c3
=

1

3
G

2
3

mM

(M + m)
1
3

ω− 1
3
dω

dt

Hence, we have,

dω

dt
= α

G
5
3

c3

mM

(m + M)
1
3

ω
11
3

Thereby

M =
(mM)

3
5

(m + M)
1
5

=
c3

G
(

1

3α
ω− 11

3
dω

dt
)

3
5

with the effective mass combination as the chirp mass M. Note that the gravitational wave
frequency fGW is related by,

2πfGW = ωGW = 2ω



For cosmological expansion of the universe, we have to account for the redshifted frequencies,
thereby, we have the relations

ωdet =
ω

1 + z
tdet =

t

1 + z
Mdet = M(1 + z)

Degeneracy in the frequency evolution due to the detector frame masses.

Signal Amplitudes

Gravitational wave polarisations in frequency domain,

where the amplitude and phases are given by

The amplitude can give the luminosity distance DL, which can be corroborated for the redshift,
and give cosmological parameters.

~
h+(f) = A(f,M)(

1 + cos2 ι

2
) exp(iΨ(f,M))

~
h×(f) = A(f,M) cos ι exp(

π

2
+ iΨ(f,M))

A(f,M) =
1

DL

5

24π
4
3

(GM)
5
6

c
3
2

1

f
7
6

Ψ(f,M) = 2πftm −
π

4
− ϕc +

3

128
(
πGM

c3
)

− 5
3 1

f
5
3



Sky localisation with multiple interferometers, by measuring the delay in respective time of
coalescences. Response depends on detectors with the antenna pattern function,
F+,×(α, θ,ψ, ι).

Binary Evolution (Newtonian Analysis)

Given at leading order, gravitational waves are generated by a time-varying mass
quadrupole moment,

hTT

ij (x) =
2G

c4r
Q̈

TT

ij (t − t0)

where r is the distance from source to observer, tret = t − r
c  is the retarded time, and Qij

is the mass quadropole moment, given by

Qij = M ij −
1

3
δijM k

k

where M ij is the second mass moment defined as

M ij(t) = ∫ d3xϱ(x, t)xixj

Now, we consider a binary system with m1 and m2 in a circular orbit with velocity ω and
relative separation R.

For the origin at the centre of mass, we compute the position vectors,
xi

1 = ( m2

M R cosωtref ,
m2

M R sinωtref , 0), xi
2 = (− m1

M R cosωtref , − m1

M R sinωtref , 0), we have the
second moment tensor M ij = m1x

i
1x

j
1 + m2x

i
2x

j
2 as

M ij =
1

2
μR2

Thereby, we have

M̈ ij = 2μR2ω2

We now use

⎛⎜⎝cos 2ωtref + 1 sin 2ωtref 0

sin 2ωtref −(cos 2ωtref − 1) 0

0 0 0

⎞⎟⎠⎛⎜⎝− cos 2ωtref − sin 2ωtref 0

− sin 2ωtref cos 2ωtref 0

0 0 0

⎞⎟⎠h+ =
G

c4r
(M̈ 11 − M̈ 22)

h× =
2G

c4r
M̈ 12



to arrive at

Now we use the Einstein quadrupole formula, relating the total power P radiated away,

P =
G

5c5
⟨

...
Q

ij
...
Qij⟩

Since, for our example, we have Q̈ij = M̈ ij. thereby,

P =
G

5c5
⟨

...
M ij

...
Mij⟩

where we have,

...
M ij = 4μR2ω3

h+ = −
4G

c4r
μR2ω2 cos 2ωtref

h× = −
2G

c4r
μR2ω2 sin 2ωtref

⎛⎜⎝ sin 2ωtref − cosωtref 0

− cos 2ωtref − sin 2ωtref 0

0 0 0

⎞⎟⎠



hence, contracting,
...
M ij

...
Mij = 32μ2R2ω2

hence the power radiated simplifies as

P =
16Gμ2R2ω6

5c5

We can use Kepler's third law ω2 = GM
R3 , and set

A =
4G

c4r
μR2ω2

Further, setting 2πfGW = 2ω, we have the expressions,

where we have the chirp mass M = (m1m2)
3
5

(m1+m2)
1
5

. We express the power radiated as

P =
32c5

5G
(
πGMfGW

c3
)

10
3

and the total energy E = − Gm1m2

2R  can be derived as

E = −(
π2G2M2f 2

GW

8
)

1
3

Now we use the energy balance P = −Ė, the rate of loss of energy from the system is
equal to the power radiated in GWs, then the rate of increase of the GW frequency, can be
seen as

32c5

5G
(
πGMfGW

c3
)

10
3

=
1

3
(
π2G2M2

fGW
)

1
3

ḟGW

to arrive at

ḟGW =
96c5π

8
3

5G
(
GM

c3
)

5
4

f
11
3

GW

h+ = −
4

r
(
GM

c2
)

5
3

(
πfgw

c
)

2
3

cos 2πfGWtref

h× = −
4

r
(
GM

c2
)

5
3

(
πfgw

c
)

2
3

sin 2πfGWtref



L03.01 Gravitational Wave Cosmology
Standard Siren: GW170814

Follow up analysis with electromagnetic counterpart. Constrained redshift from spectra
observations, of NGC 4993  and kilonova emissions. This further constrains the Hubble
constant, v = H0d, leading to posterior for the Hubble constant. Account must be taken to
separate out the recession and peculiar velocities of the source galaxy, and considering the GW
wave velocity.

Bayesian Approach

Likelihood, given our dataset of GW observation, recession velocity vr, peculiar velocity
averaged vp given the inference parameters,

L(xGW, vr, ⟨vp⟩|d, cos ι, vp,H0) = p(xGW|d, cos ι)p(vr|d, vp,H0)p(⟨vp⟩|vp)

where we have the cosmological vr can be assumed normal distribution, with

p(vr|d, vp,H0) ∼ N (vp + H0d,σ2
vr)(vr)



and similarly,

p(⟨vp⟩|vp) ∼ N (vp,σ2
vp
)(vp)

such that, we have the posterior,

p(H0, {d, cos ι, vp}|xGW, vr, ⟨vp⟩) ∝ p(xGW|d, cos ι)p(vr|d, vp,H0)p(⟨vp⟩|vp)
π(H0)

Ns(H0)
π(d)π(vp)π(cos ι)

where the Ns(H0) accounts for the selection criteria. Marginalizing over the other parameters,
we obtain the posterior p(H0).

Follow up by observations of apparent superluminal jets perpendicular to inclination, by VLBI
(Very Long Baseline Interferometry). Measurement breaks degeneracy between distance DL

and inclination ι.

Peculiar Velocities Measurements

Galaxy Scaling Relations and their Residuals:

Tully Fisher Relation: Strongly constrains the luminosity and rotational velocity of
galaxies, residuals in the fundamental plane are correlated with peculiar velocities.



Hubble constant from BBHs

Determining Hubble constant from GW observations with no electromagnetic counterpart. We
can estimate H0 < Hmax, then the error box can be surveyed for bright galaxies, with velocities
below v < Hmaxr. Statistical analysis, through analyzing clusters in the localisation determined
earlier, by understanding their redshifts.

Statistical Host Identification, ignoring the clustering of galaxies, potential host is in the
galaxy catalog, with the localization, using redshift measurements. Single galaxy with the
correct Hubble constant, rest are randomly distributed. Corroborated with multiple events.

Highly constrained relation, with minimal scatter.

The fundamental plane, is a relation between size, surface brightness and velocity
dispersion. Correlated with the Virial Theorem.



Spectral Sirens, Invariance of mass distribution of BBH merger events, while GW events
measure the detector frame quantities, M → M(1 + z).

Shifts in the mass distribution with redshifts, constrains the Hubble constant. For increasing
luminosity distance, the whole distribution of detector frame masses shifts to higher values. The
amount shifted corresponds to the redshift at a given luminosity distance and it is therefore
sensitive to the expansion rate. For example, a higher value of H0 associates higher detected
masses to the same distance.

Bayesian approach must be implemented, necessary since there are huge degeneracies in the
intrinsic mass measurements. For cosmological parameters, rate and shape parameters, we
have Λ = {Ω,λ′, N }, such that,

p(Λ|{d}) =
p({d}|Λ)p(Λ)

p({d})

where we have dN

dθ (Λ) = N ppop(θ,λ′) as the rate and shape parameters. Parameters of



individual events drawn from sample properties,

p({θ}|λ′) =
Nobs

∏
i=1

ppop(θi|λ′)

∫ dθ ppop(θi|λ′)

Even in the absence of error bars, we have to be careful about selection effects, where we
weight by the detection probability,

p({θ}|λ′) =
Nobs

∏
i=1

ppop(θi|λ′)pdet(θi)

∫ dθ ppop(θi|λ′)pdet(θ)
=

Nobs

∏
i=1

ppop(θi|λ′)

∫ dθ ppop(θi|λ′)pdet(θ)

Further, incorporating noise as series of realizations and an overall threshold,

pdet(θ) = ∫
Threshold

p({d}|θ)dθ = ∫ I{d}p({d}|θ)dθ

where the indicator function selects the detectable events.

We have the probability of the data given the parameters as

p({d}|λ′) =
∫ dθp({d}|{θ})ppop(θ|λ′)

Z(λ′)

The evidence simplifies,

Z(λ′) = ∫ d{d} ∫ dθ p({d}|{θ})ppop({θ}|λ′)

= ∫ dθ(∫ d{d} p({d}|{θ}))ppop({θ}|λ′)

= ∫ dθ pdet({θ})ppop({θ}|λ′)



L04.01 Gravitational Wave Cosmology
Bayesian Analysis

Shape Parameter

Recapping,

p({θ}|λ′) =
Nobs

∏
i=1

ppop(θi|λ′)pdet(θi)

∫ dθ ppop(θi|λ′)pdet(θ)
=

Nobs

∏
i=1

ppop(θi|λ′)

∫ dθ ppop(θi|λ′)pdet(θ)

We have the probability of the data given the parameters as

p({d}|λ′) =
∫ dθp({d}|{θ})ppop(θ|λ′)

∫ dθ pdet({θ})ppop({θ}|λ′)

Prior to the meta analysis, parameter estimation runs provide posteriors from the GW analysis.
We have

p(di|θi) =
p(θi|di)p(di)

π({θ})

where the priors are reweighted to those included in the likelihood. We thereby, have,

p({d}|λ′) =
Nobs

∏
i=1

1
si
∑si

j=1 ppop(θji |λ
′) p(di)

π(θ}

∫ dθ pdet({θ})ppop({θ}|λ′)

such that we can use Bayesian theorem to arrive at,

p(λ′| {d}) =
π(λ′)

p({d})

Nobs

∏
i=1

1
si
∑si

j=1 ppop(θji |λ
′) p(di)

π(θ}

∫ dθ pdet({θ})ppop({θ}|λ′)

Rate Parameter

We assume a Poission likelihood,

p(Nobs) ∼ exp(−Ndet)N
Nobs

det

such that, we have the average number of observations

Nobs = ∫ α p(Nobs)dNobs = ∫ α  exp(−Ndet)N
Nobs

det = αNdet

as the effective detection distribution.



Combined Likelihood

We have the overall likelihood

L(λ′,N |{d}) = π(λ′)π(N)

Prior

Nobs

∏
i=1

Likelihood Samples

1
si
∑si

j=1 ppop(θji |λ
′)

p(di)
π(θ}

∫ dθ pdet({θ})ppop({θ}|λ′)

Selection Effects

exp(−Ndet)N
Nobs

det

Number Prameters

For a fixed cosmology, we have the distributions of the posteriors.

Incorporating Redshift

We can further separate the cosmological parameters {θ} ≡ {θ′, z} by using independent priors
on θ′ and the line of sight redshift z prior. The redshift of the GW event could be related to
galaxies with apparent magnitude m, absolute magnitude M, and that are either in the catalog
(G), or not ( ~

G). We can marginalize,

We have p(z,M,M|G, Λ), from Bayes theorem, In Catalog as

Thereby, the integrals,

∫ ∫ dm dM  p(z,M,m|G, Λ) =
1

p(s|G, θ′, Λ)
∫ dm p(z,m|G, θ′)p(s|z,M(z,m, Λ), Λ)








p(z|θ′, Λ) = ∫ ∫ ∑
g∈G,

~
G

dm dM  p(z,m,M, g|θ′, Λ)

= p(G|θ′, Λ)∫ ∫ dm dM  p(z,M,m|G, Λ)

In Catalog

+ p(
~
G|θ′, Λ)∫ ∫ dm dM  p(z,M,m|

~
G, Λ)

Out Catalog
 

p(z,M,m|G, Λ) =
p(z,M,m|G, Λ∖{s})p(s|z,M,m,G, Λ)

p(s|G, θ′, Λ)

=
1

p(s|G, θ′, Λ)
δ(M −M(z,m, Λ))p(z,m|G, θ′)p(s|z,M, Λ)



where we have the incorporation of redshift uncertainty into the galaxies in the likelihood, as

p(z,m|G, θ′) =
1

Ngal(θ′)

Ngal(θ
′)

∑
k

p(z|ẑk)δ(z − ẑk)

Similarly, for the Out Catalog term, we have a purely cosmological dependent term, we use the
selection threshold such that,

p(
~
G|z,M,m, θ′,H0) = Θ[m − mthr(θ)]Θ[zcut − z] + Θ[z − zcut]

where the galaxies fainter than magnitude threshold but within redshift range, and galaxies
outside the range. The integral simplifies as,

For the redshift line of sight prior, we can also separate parameters, cosmological, or
correspond to normalization or shape or mass distribution,

p(s|z,M, Λ) = p(s|z,M, Λrate = p(s|z, Λrate)p(s|M)

where we can have uniform or luminosity weighted sampling for p(s|M). The line of sight prior
can be pre-computed in offline analyses.

Sampled Posteriors

Degeneracy between Hubble constant H0 and features of mass distribution upto the maximum
mass of the black hole.

∫ ∫ dm dM  p(z,M,m|
~
G, θ′, Λ, s) =

1

p(s|
~
G, θ′, Λ)p(

~
G|z,M,m)

{Θ[zcut − z]∫
Mmax

M(z,mth,Λ)
dM  p(M|Λ)p(z|M

+Θ[z − zcut]∫
Mmax

Mmin

dM  p(M|Λ)p(z|M)}





L01.02 GW Probes for the Early Universe
Introduction

Weakness of gravitational waves interaction, universe is transparent to GWs,

Γ(T )

R(T )
∼

G2T 5

T 2/MPlanck
∼ (

T

MPlanck
) < 1

decoupling of the gravitational waves, due to less effective cross section rate. The interaction
rate Γ(T ) is assuming weak interaction at temperature T . Similar calculations for photons,
neutrinos show interaction.
Similar analogy to the Cosmic Background. Stochastic GW Backgrounds, a fossil radiation, of
the earlier universe, at those energy scales of GW wave generation.

Flat Space Gravitational Field Background

First-order perturbation |hμν(x)| ≪ 1, with metric

gμν(x) = ημν + hμν(x)

Linearise in hμν(x), with metric gμν(x) ∼ ημν and its inverse gμν(x) ∼ ημν(x) in the first order for
contractions. Affine connection,

Γα
μν ≃

1

2
(∂νh

α
μ + ∂μh

α
ν − ∂αhμν)

Riemann tensor, being invariant under coordinate transformations,

Rα
μνβ ≃

1

2
(∂μ∂νh

α
β + ∂β∂αhμν + ∂ν∂αhμβ − ∂β∂μh

α
ν )

Einstein tensor,

Gμν =
1

2
(∂α∂ν

~
hα
μ + ∂α∂μ

~
hνα − □

~
hμν − ημν∂α∂β~

hα
β)

where ~hμν = hμν − 1
2 ημνh is the trace free stress tensor.

Gauge Transformations

Since General relativity is invariant under coordinate transformations, we have linearised
perturbed GR being invariant under slowly varying coordinate transformations.

We have xμ → x′μ = xμ + ξμ, thereby, hμν(x) → h′
μν(x) = hμν(x) − ∂μξν − ∂νξμ, invariance

maintained under |∂αξβ| ≪ |hαβ| such that ||h′
μν|| ≪ 1.



Lorenz Transformations

Consider xμ → x′μ = aμ + Λμ
νx

ν + ξν, where aμ are some constants, Λμ
ν  is the Lorenz

transformation, and ξμ is a small gauge transformation. Inverting, we have
xγ = Λγ

μx
μ − Λγ

μ − Λγ
μξ

μ, thereby, the derivative ∂xγ

∂xα ≃ Λγ
α − Λγ

μ
∂ξμ

∂xν
∂xν

∂xα  in the first order.
Thereby, we have the metric

gαβ → g′
αβ ≃ ηαβ + [h′

αβ − Λσ
βξασ − Λσ

αξσβ]

=h′′
αβ

where h′
αβ = Λμ

αΛν
βhμν. Propagation on the flat metric, as an effective background. Thereby, h′′

μν

can be treated as a 2-tensor on a flat background under Lorenz gauge transformations.

The derivative transforms as ∂μ~
hμν(x) → ∂ ′μ~

h′
μν(x) = ∂μ~

hμν(x) − □ξν, Lorenz Gauge sets
∂μ~

h′
μν(x) = 0, which can be done by solving the equation ∂μ~

hμν(x) = □ξν. The Poisson
equation is simplified as □~

hμν = ∂μ~
hμν = Jν, in flat spacetime, as the Dirichlet boundary

conditions are met. This simplifies the derivatives in the Einstein tensor, by setting it to zero.

From the Lorenz gauge, we have the Einstein equations being represented as a Wave
equation,

□
~
hμν = −16πGTμν

Thereby, the gauge ∂μ~
hμν(x) = 0 implies ∂μTμν = 0. Implies energy-momentum tensor of the

source is conserved. Thereby, the source does not lose energy and momentum by emission in
linearised theory, source described by Newtonian gravity. Linearised theory does not describe
how GW emission influences the source, but describes behavior of test masses.

We have symmetries ~hμν =
~
hνμ implying 10 components, with further the Lorenz gauge,

∂μ~
hμν(x) = 0 reducing to 4 independent components. These are not all physical gauge

transformations, residual gauge freedom exists in the Lorenz gauge.

Due to residual degrees of freedom, performing the coordinate transformation under the Lorenz
gauge, with xμ → x′μ = xμ + ξμ, with □ξμ = 0, to remain in the gauge. We have the relations,
hμν(x) → h′

μν(x) = hμν(x) − ξμν where ξμν = ημν∂αξα − ∂μξν − ∂νξμ. We see the generalized
conditions, □ξμν = 0 since the commuting derivatives in vacuum, and □ξμ = 0. Further, we
have □~

hμν → □′~h′
μν ≃ □(

~
hμν + ξμν). By the additional gauge freedom, we set ~h = 0 and hence

hμν =
~
hμν, and further ~hi0 = 0. Further, by our earlier Lorenz gauge, ∂μhμ0 = 0, and hence

∇2h00 = 0, and thereby, we arrive at the further constraints for hμν. We have the 8 constraints,
h0μ = 0, hμ

μ = 0 and ∂ ihi = 0.

Restricting to vacuum spacetime, the residual coordinate freedom can be used to fix the
constraints, Transverse-Traceless Gauge*. Traceless: ~h′μ

μ = 0 and Transverse h′
0i = 0 with





further conditions ∂ ih′
ij = 0 and h00 = 0. Since □~

hμν = 0 → □
~
h = 0. The trace transforms as

~
h →

~
h′ =

~
h − 2∂μξμ thereby, □~

h = 0 and therefore, only because of vacuum.

Thereby, the number of independent components in n dimensions is n(n+1)
2

− (n + n) = n(n−3)
2

,
where the n(n+1)

2
 symmetric components, are constrained by n gauge conditions, and n residual

degrees of freedom. For n = 4, we have 2 physical degrees of freedom.

GW Waves

Thereby, only 2 remaining physical degrees of freedom in the metric leading to

□hij(x
′) = 0

since we can chose 4 functions ξμ freely. These two independent polarisations are summed as

hij(x) = ∑
r=+,×

∫
d3k

(2π)3
hr(k)erij(k̂) exp (−ik(t − k ⋅ x))

which are plane waves, transverse, moving at the speed of light. The polarisation tensors are
transverse in [m,n] plane

where the free waves are assumed to travel in the z direction. We have

hij(z, t) =

ij

cos (ω(t − z))

Metric line element is thereby,

ds2 = −dt2 + dz2 + (1 + h+ cos (ω(t − z)))dx2 + (1 − h× cos (ω(t − z)))dy2

Action on Test masses

Consider plane propagating waves in r̂ direction, ~hμν ∼ Aμν exp(ikr ⋅ r̂), thereby,
□

~
hμν = −

~
hμνη

αβkαkβ = 0, implying that, kαkα = 0, thereby, ω2 = k2
r . Further, we use the Lorenz

gauge, to have ∂μ~
hμν = 0, thereby Aμνk

ν = 0, hence Aμ0 = Aμr, which reduces to 6
independent components. Further, with the additional gauge freedom, we can relate the in the
new coordinates, ~hμν →

~
h′
μν =

~
hμν − ∂μξν − ∂νξμ + ημν∂αξα. Thereby, we have

Aμν → A ′
μν = Aμν − ikμξν − ikνξμ + ημνikαξ

α.This reduces further constraints to only 2
independent quantities of Aμν.

Geodesic deviation equation ξi = −Ri
0j0ξ

j = 1
2

~̈
hijξ

j in the TT gauge. Thereby, the evolution is
directed by the second derivative of the metric tensor perturbation. The action on test masses

e+
ij(k̂) = m̂im̂j − n̂in̂j

e×
ij(k̂) = m̂in̂j + n̂im̂j

⎛⎜⎝ h+ h× 0

−h× h+ 0

0 0 0

⎞⎟⎠



can be seen through the effective displacements.

Quantisation

Polarisation is related to the spin of massless particle expected upon quantisation S = 2π
θ ,

where θ is the invariance angle of generic rotation. On transformation by θ = 2π results in spin-2
quantisation which are the two independent degrees of freedom which are physical. GWs have
only two physical components is a manifestation of the intrinsic nature of gravitational
interaction, mediated by the graviton, a spin-2 massless field, that has only two independent
helicity states. Thereby, true with spacetime with matter fields.

Matter Field Gravitational Background

Metric

gμν(x) = ημν + hμν(x)

with splitting into irreducible components under rotation.

Now, infinitesimal coordinate transformations, xμ → x′μ = xμ + ξμ,

h00 = −2ϕ

Scalar Trace

h0i = ∂iB

Scalar

+ Si

Divergence-Free Vector

(∂iSi = 0)

hij = −2ψδij

Scalar Trace

+ (∂i∂j −
1

3
∇2)

Scalar

+ ∂jFi

Vector

+ Hij

Tensor


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hμν(x) → h′
μν(x) = hμν(x) − ∂μξν − ∂νξμ, with the decomposition, ξμ = (ξ0, ξi) = (d0, ∂id + di),

thereby we have the invariant coordinate transformations,

Two scalars, one vector and one tensor gauge invariant variables. Six independent degrees of
freedom of the metric.

For the Tμν. we have the components,

Similar to before, 4 independent quantities, due to energy-momentum conservation.

Rewriting the Einstein equation in terms of the 6 gauge invariant variables,

Three Poisson-like-equations, one wave equation. Only the TT metric components are
radiative. Only the TT metric components are radiative.

Φ = ϕ + Ḃ −
1

2
Ë Scalar

Θ = −2ψ −
1

3
∇2E Scalar

Σi = Si − Ḟi (∂iΣi = 0) Vector

Hij = Hij (∂iHij = 0,Hi
i = 0) Tensor

T00 = ϱ

Scalar

T0i = ∂iu

Scalar

+ ui

Divergence-Free Vector

(∂iui = 0)

Tij = pδij

Scalar Trace

+ (∂i∂j −
1

3
∇2)σ

Scalar

+ ∂ivj + ∂jvi

Vector

+ Πij

Tensor


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∇2Θ = −8πGϱ

∇2Φ = 4πG (ϱ + 3p − 3u̇)

∇2Σi = −16πGSi

□Hij = −16πGΠij



L02.02 Cosmological Gravitational Wave
Background

GW Energy-Momentum Tensor and GW Propagation

Background spacetime has maximally symmetric sub-manifolds. We study the propagation and
generation of a background of fluctuation scale LB. Resorting to a clear separation of scales.

Relative scale of spatial variations are small, |hμν| ≪ 1 and λ
LB

≪ 1 and fBfL ≪ 1.
Distinction between background and GWs, averaging of physical quantities, λ ≪ ℓ̄ ≪ LB as the
characteristic scale, fB ≪ f̄ ≪ f, we average the full metric over the length scales, removing
high frequency or smaller lengths, such that ⟨gμν⟩ = ḡμν, and ⟨hμν⟩ = 0.

Expanding the Einstein equations to second order in hμν (since linearisation gives zeros),
through Rμν = R̄μν + R

(1)
μν + R

(2)
μν , where the quadratic term can influence the background,

averaging at second order.

Background Equation

⋆

Gravitational waves only change the proper distance between the masses, and not their
coordinate distances.
For a particle at rest initially, with world line xμ(t), we have

d2xμ

dτ 2
+ Γμ

αβ

dxα

dτ

dxβ

dτ
= 0

which can be simplified in the TT gauge to arrive at d2xμ

dτ 2 = 0, implying xμ must remain
constant, since it is at rest initially.
However, the proper distance defined through the metric

ℓ = ∫ ds = ∫ √gαβ
dxα

dτ

dxβ

dτ
dτ

is shown to change with the propagation of GW waves.
The proper distance is related to the coordinate distance with the effective scale due to the
GW wave, and the coordinate distance is constant.



Background Einstein equation, with ⟨⋯⟩ = [⋯]low, such that,

R̄μν = [−R
(2)
μν ]

low
+ 8πG[Tμν −

1

2
Tgμν]

low

where R̄μν is the background curvature in O((1/LB)2), [−R
(2)
μν ]

low
 sources the curvature of the

background in O((h/λ)2), and Tμν is the matter density only sourcing the background curvature.
By comparing the orders, we have the perturbation,

h ≲
λ

LB

Rearranging, and performing the average,

Ḡμν = ⟨Rμν⟩ −
1

2
ḡμν⟨R⟩ = 8πG (⟨Tμν⟩ + T GW

μν )

where T GW
μν  is the gravitational wave energy-momentum tensor, given by

T GW
μν = −

1

8πG
⟨R

(2)
μν −

1

2
ḡμνR

(2)⟩

and reducing in TT gauge, we have,

T GW
μν =

1

32πG
⟨∇μhαβ∇νh

αβ⟩

where we note that the Bianchi identity, is for the entire energy momentum conservation,
including the gravitational wave emission. The energy density of GW can be derived from the
trace, as,

ϱGW = ⟨ḣijḣ
ij⟩

which is gauge-independent.

Perturbed Einstein equation

Now, we focus on the high modes, given by the linear term,

R
(1)
μν = [−R

(2)
μν ]

high
+ 8πG[Tμν −

1

2
Tgμν]

high

where here the [−R
(2)
μν ]

high
 is negligible as the non-linear interaction of the wave, and Tμν can

be the source terms. The perturbed Einstein equation, is thereby,

R
(1)
μν −

1

2
(ḡμνR

(1) + hμνR̄) ≃ 8πG[Tμν]high



where the evolution of GWs on the curved, but smooth/slowly evolving background is projected.
The higher Tμν contributes as a possible source of GWs.

Thereby, we can calculate by expanding the Riemann tensor,

−
1

2
□

~
hμν + Rλ

μνσ
~
hσ
λ + ∇(ν∇σ~

hμ)σ −
1

2
ḡμν∇α∇β~

hαβ + Rαβ [
1

2
ḡμν

~
hαβ −

1

2
~
hμν ḡαβ + ḡβ(μ)

~
hν)α] = 8πGδTμ

Propagation in FLRW

For the FLRW metric, we have, in the gauge, ∂ihij = 0, and hi
i = 0,

ds2 = −dt2 + a2(t) (δij + hij)dxidxj

with solving the above equations in the traceless tensor,

ḧij(x) + 3Hḣij(x) −
∇2

a2(t)
hij(x) = 16πGΠij(x)

The source tensor represents the anisotropic stress, with no gravitational wave from the
homogeneous component.

Using the translational invariance, we perform a Fourier transform in space, through

hij(x) = ∑
r=+,×

∫
d3

k

(2π)3
hr(k, t)erij(k̂) exp (ik ⋅ x)

where the time dependence is still present in hr(k, t), unlike Minkowski. Similarly, we can
decompose the source as,

Πij(x) = ∑
r=+,×

∫
d3

k

(2π)3
Πr(k, t)erij(k̂) exp (ik ⋅ x)

where we can decouple for each polarisation mode, as

h′′
r (k, τ) + 2Hh′

r(k, τ) + k2hr(k, τ) = 16πGa2(τ)Πr(k, τ)

where we use the conformal time derivatives.

For the homogeneous equation without source, we can have the power law scale factor
a(τ) = anτ

n, and we can solve in terms of Bessel functions, as

hr(k, τ) =
Ar(k)

anτ n−1
jn−1(kτ) +

Br(k)

anτ n−1
yn−1(kτ)

where can transform Hr(k, τ) = a(τ)hr(k, τ), where H ′′
r (k, τ) + (k2 − a′′

a )Hr(k, τ) = 0 when
a′′

a
∝ H, with two limiting cases: sub-Hubble modes, for k2 ≫ H

2 where we have plane GW



waves with redshifted amplitude, and super-Hubble modes, where k2 ≪ h2 and relevant
solution under inflationary initial conditions.

We have defined GWs and GW energy density without ambiguity in the FLRW spacetime,
which oscillate and decay with the expansion of the universe.

Stochastic GW Background

Only statistical properties can be accessed, due to incoherent superposition of sources which
cannot be individually resolved. Confusion noise, indeterministic combination of deterministic
sources.

For a GW source at time t∗ in the early universe, which cannot produce a signal on length/time
scales larger than the causal horizon, with

ℓ∗ ≤ H−1
∗

where the characteristic length scale of the source is ℓ∗, representing the size of variation of the
tensor anisitropic stresses.

The angular size on the sky today of a region in which the SGWB signal is correlated, is

Θ∗ =
ℓ

dA(z∗)

such that the number of uncorrelated regions accessible currently is around Θ−2, hence order
of magnitude analysis, results that the details of the signal cannot be accessed.

We can reduce the ensemble average to the volume/time average by the Ergodic Hypothesis,
with different realizations of the GW signal in the homogeneous and the isotropic nature of the
universe.



L03.02 Stochastic Gravitational Wave
Backgrounds
Primordial SGWB

The primordial SGWBs are homogeneous (similar to the FLRW spacetime, with the correlators
depending on the relative proper distance, ⟨hij(x, τ1)hkl(y, τ2)⟩ = Fijkl(|x − y|, τ1, τ2)) and
isotropic (there exists induced anisotropy, like the dipole with respect to the cosmological frame,
more challenging than the monopole), unpolarised and Gaussian (Central Limit Theorem,
independent random realisations).

Power spectrum of the GW amplitude, using the cross correlation

⟨hr(k, τ)h∗
p(q, τ)⟩ =

8π5

k3
δ(3)(k − q)δrph

2
c(k, τ)

which entails, the characteristic nature similar to the CMB. It is the second moment, as the two-
point correlation function.

For the GW energy density ϱGW, we note,

ϱGW =
⟨ḣij(x, t)ḣij(x, t)⟩

32πG
=

⟨ḣij(x, τ)ḣij(x, τ)⟩

32πGa2(τ)
= ∫

∞

0

dk

k

∂ϱGW

∂ ln k

For free propagating sub-Hubble modes, we can expand as plane waves in the Fourier space,
using the freely propagating plane wave, and time-average by approximating
h′2

c(k, τ) ∼ k2h2
c(k, τ). We have the same structure for the cross correlation function as above,

by using quasi-static nature of the spacetime, such that we can Fourier transform, such that,

⟨h′
r(k, τ)h′∗

p(q, τ)⟩ =
8π5

k3
δ(3)(k − q)δrph

′2
c(k, τ)

The power spectrum of the GW energy density can be related to the power spectrum of the GW
amplitude as

∂ϱGW

∂ ln k
=

k2h2
c(τ)

16πGa2(τ)

Prospectus: LISA



Confusion noise detection from binaries, and stochastic GW background.

Null channel evidence is required, due to lack of cross-correlation.

Pulsar Timing Array

Rotating, magnetized neutron stars emitting periodic radio-frequency EM pulses, whose arrival
times can be modeled by timing residuals, studying effects of passing by gravitational wave.



Through gravitational redshift, caused by waves emitted by far-away sources, and travelling
through spacetime between the pulsars and the earth. Photon from the pulsar, received at the
arrival time

dt = ±√(δij + hij)dxidxj

which leads us to,

to − te = L +
1

2
ûiûj ∫

L

0

ds hij(te + s, x + sû)

Effect of metric perturbations on a single beam.

Principle of measurement, is to compare alternate pulses, thereby, the time residual shift, is
given by



ΔT =
1

2
ûiûj ∫

L

0
ds [hij(te + s + P, x + sû) − hij(te + s, x + sû)]

due to the varying time-dependence of gravitational wave.

Thereby, we have

ΔT =
1

2

ûiûj

1 − k̂ ⋅ û
∫

te−k̂⋅x+L(1−k̂⋅û)

te−k̂⋅x
ds [hij(X + P) − hij(X)]

which can be Taylor expanded, as

ΔT

P
≃

1

2

ûiûj

1 − k̂ ⋅ û
[hij(te + L, x0)

Earth Term

− hij(te, x0)

Pulsar Term

]

where we can estimate the scale of time variation, with a semi-classical approach.

 



L04.02 Pulsar Timing Arrays

Time Delay Analysis

We have

ΔT =
1

2

ûiûj

1 − k̂ ⋅ û
∫

te−k̂⋅x+L(1−k̂⋅û)

te−k̂⋅x
ds [hij(X + P) − hij(X)]

Noting the frequency evolution (chirp) as

fGW(τ) =
1

π
(

5

256
)

3
8 1

(GMc)
5
8 τ

3
8

where we understand that fGWP ≪ 1, thereby, hij is Taylor expanded, as

ΔT

P
≃

1

2

ûiûj

1 − k̂ ⋅ û
[hij(te + L, x0)

Earth Term

− hij(te, x0)

Pulsar Term

]
 



The GW wave at earth, and at the pulsar differ by a characteristic time delay.
The timing residuals are estimated as

R(T ) = ∫
tref+T

tref

dt 
ΔT

P

Measurement plausible through extremely small residual order, with the precision of pulsar
monitoring.

Correlations between many pulsars to reduce noise. For the earth term, we have
te + L − |x0 − xs|, which dominates since the pulsar term varies. The cross correlation is
related as

⟨Ra(T )Rb(T )⟩ = ∫
tref+T

tref

dt′ ∫
tref+T

tref

dt′′ ⟨
ΔTa

Pa

(t′)
ΔTb

Pb

(t′′)⟩

where we expand

ΔTi

Pi

= ∑
r

∫
d3k

(2π)3
hr(k)F r

i (k̂) exp(−ik(t′ − k̂ ⋅ r))[1 − exp(ikLi(1 − k̂ ⋅ ui))]

where we have put the earth at the origin, and F r
i  is the detector response, corroborated as,

F r
i (k̂) =

1

2

ûiûj

1 − k̂ ⋅ û

We use the Stochastic power spectrum

⟨hr(k, τ)h∗
p(q, τ)⟩ =

8π5

k3
δ(3)(k − q)δrph

2
c(k, τ)

and noting that the earth therm dominates, for two different pulsars (a ≠ b),

[1 − exp(ikLa(1 − k̂ ⋅ ua))][1 − exp(−ikLb(1 − k̂ ⋅ ub))] ∼ 1

we simplify as

⟨Ra(T )Rb(T )⟩ = C(θab)∫
∞

0
df 

h2
c(f)

(2π)2f 3
[1 + cos(2πf(T − tref))]

where C(θab) solely depends on the angle between the two pulsars, characteristic of the
Hellings & Downs curve, defined as

C(θab) = ∫
dk̂

4π
⟨F r

a (k̂)F r
b (k̂)⟩

Similar power spectrum obtained from single source of supermassive black hole with multiple



pulsars.

Stochastic GW Background

Modelling

hc(f) ∼ A(
f

fref
)

−α

, α = −
2

3

in terms of the power spectrum of the GW energy density, becomes,

ΩGW ∼
2π2

3H 2
0

f 2h2
c(f) = ΩGW(fref)(

f

fref
)

2
3

We compute the relative energy density to constrain ḣ, such that we have

ḣ(t) =
4π

2
3

a(t)r
(GM)

5
3 (

1 + cos2 θ

2
)

d

dt
[f

2
3 (t) cos(2Φ(t))]

such that, we have the integral for

ϱGW

ϱ
=

π
2
3

3Gϱc
∫

df

f
f

2
3 ΩGW(f)

where the astrophysical modelling of the spectrum conditions the observation.

We have

dϱGW

d ln f
∝ ∫

dz

1 + z
n(z)∫ dNλ

dE

d ln f s
GW

(Λ, f)



where fGW = (1 + z)f and Λ = {λ} are the intrinsic parameters. We have the spectral index
dϱGW

d ln f ∝ f
2
3 .



L01.01 Probing Large Scale Structure
Inhomogeneous Universe

Statistical homogeneous universe at large-scales, has a lot of structure, which evolve with time.
CMB anisotropies, and distribution of galaxies.
Matter power spectrum probed from different sources.

Projected correlation functions show clustering.

FLRW Background

Homogeneous and Isotropic metric for κ → 0, given by

ds2 = gαβdx
αdxβ = −c2dt2 + a2(t)dΣ2

We normalize at current epoch, a(t0) = 1, and defining, redshift observable, z = 1
a − 1.

Substituting in the Einstein equation, we have the Friedmann equations,

where we assume the energy density and momentum tensor for a perfect fluid.

(
ȧ(t)

a(t)
)

2

=
8πG

3
∑
i

Pi

ä(t)

a(t)
= −4πG∑

i

(ϱi +
3Pi

c2
)



Combining the equations (conservation of energy density), with H(t) = ȧ(t)
a(t)

, we have

ϱ̇i + 3H (ϱ2
i +

Pi

c2
) = 0

such that, we have

ϱi(t) = ϱi,0a
−3(1+wi)

where we have the equation state,

Pi = wiϱic
2

We often, define the ratios of density to the critical density, ϱcrit =
3H 2(t)

8πG , such that we define

Ωi(t) =
ϱi(t)

ϱcrit
=

8πGϱi(t)

3H 2(t)

such that, we have the evolution,

Ωi(t) = Ωi,0(1 + z)3(1+wi)

Thereby, the Hubble equation simplifies, as

H 2(t) = H 2
0 [Ωm,0(1 + z)3 + ΩΛ + Ωγ,0(1 + z)4]

where the universe had initially radiation dominated (Ωγ), then matter dominated (Ωm), to
currently, Λ dominated (ΩΛ).

Matter Perturbations

Thereby, we work with non relativistic matter perturbations, with scales smaller than c
H(z)

, such
that we can work in the Newtonian limit for the perturbations. Similar analyses do not work for
radiation perturbations.

General Perturbations

We have the metric,

ds2 = (ḡαβ + δgαβ)dxαdxβ

where, we have the Einstein equation,

Ḡαβ + δGαβ =
8πG

c4
(T̄αβ + δTαβ)

We assume small perturbations, since the equations are extremely non-linear.



In physical coordinates (t, r) the fluid and gravity system for non-relativistic matter is

where ϱ(t, r) is the fluid density, and u(t, r) is the proper velocity of the fluid.

Let us assume dark matter being cold and non relativistic, under the ΛCDM model, using
observational and cosmological studies. where, we have the perturbed potential Φ and the
pressure P .

Expanding Universe

Firstly, to solve under the framework of the expanding universe, we define the proper/physical
coordinates r, in terms of the comoving coordinates χ, as

r(t) = a(t)χ(t)

and we define the density contrast δ(t, χ), as

δ(t, χ) =
ϱ(t, χ)

ϱ̄m(t)
− 1

where we have averaged over the entire volume. Similarly, we can define the peculiar velocity,
subtracting the cosmological expansion velocity, as

v(t, χ) = a(t)
dχ

dt
= u(t, χ) −

ȧ(t)

a(t)
r

and similarly, define the perturbed pressure p(t, χ) = P − P̄  and potential ϕ(t, χ) = Φ − ΦFRW.
This subtraction of effective background metric separates non-clustering components, where
dark energy is assumed to not cluster.

ϱ̇(t, r) + ∇r(ϱ(t, r)u(t, r)) = 0

u̇(t, r) + (u(t, r) ⋅ ∇r)u(t, r) = −∇rΦ(t, r) −
∇rP(t, r)

ϱ(t, r)

∇2
rΦ(t, r) = 4πG[ϱ(t, r) + ϱ̄m(t) +

3P̄m(t)

c2
]

Perturbative Fluid Equations

We have the transformation r(t) = a(t)χ(t), with u(t, r) = ȧ(t)χ + v(t, r) operators
∂t|r = ∂t|χ + ∂t|r (

r

a(t)
)∇χ = ∂t|χ −

ȧ(t)

a(t)
χ ⋅ ∇χ, and ∇r = 1

a(t)
χ.

A. Continuity equation, transforms, as ϱ̇(t, r) + ∇r(ϱ(t, r)u(t, r) = 0 being rewritten as,
ϱ̇(t, χ) − ȧ(t)

a(t)
χ ⋅ ∇χϱ(t, χ) + 1

a(t)
∇χ(ϱ(t, r)[ȧ(t)χ + v(t, χ)] = 0, such that, the expression



simplifies, thereby,

ϱ̇(t, χ) + 3
ȧ(t)

a(t)
ϱ(t, χ) +

1

a(t)
∇χ(v(t, χ)ϱ(t, χ)) = 0

An interesting insight is for the static background field ϱ̄m(t), we have the continuity
equation,

˙̄ϱm(t) + 3
ȧ(t)

a(t)
ϱ̄m(t) = 0

Now, for perturbations, ϱ(t, χ) = ϱ̄m(t)(1 + δ(t, χ)), such that, when we substitute, thereby,

δ̇(t, χ) +
1

a(t)
∇χ [(1 + δ(t, χ))v(t, χ)] + ˙̄ϱm(t) + 3

ȧ(t)

a(t)
ϱ̄m(t)

=0

= 0

B. Euler equation, u̇(t, r) + (u(t, r) ⋅ ∇r)u(t, r) = −∇rΦ(t, r) − ∇rP(t,r)
ϱ(t,r) . The

transformation of (u(t, r) ⋅ ∇r)u(t, r) as
1

a(t)
((ȧ(t)χ + v(t, χ)) ⋅ ∇χ)(ȧ(t)χ + v(t, χ)) = 1

a(t)
[ȧ2(t)χ + ȧ(t)(χ ⋅ ∇χ)v(t, χ) + ȧ(t)v + (v

, and thus combining, the left hand side is,
(ä(t)χ + v̇(t, χ) − ȧ2(t)

a(t)
χ − ȧ(t)

a(t)
(χ ⋅ ∇χ)v(t, χ)) + 1

a(t)
[ȧ2(t)χ + ȧ(t)(χ ⋅ ∇χ)v(t, χ) + ȧ(t)v(

. This simplifies, as ä(t)χ + v̇(t, χ) + ȧ(t)
a(t)

v(t, χ) + 1
a(t)

(v(t, χ) ⋅ ∇χ)v(t, χ). The right hand
side transforms as − 1

a(t)
∇χΦ(t, χ) − 1

a(t)ϱ
∇χP(t, χ). Thereby, the entire equation, is

v̇(t, χ) +
ȧ(t)

a(t)
v(t, χ) +

1

a(t)
(v(t, χ) ⋅ ∇χ)v(t, χ) + ä(t)χ = −

1

a(t)
∇χΦ(t, χ) −

∇χP(t, χ)

a(t)ϱ(t, χ)

Now, for perturbations, we use the Friedmann equation, we note ∇χP(t, χ) = ∇χp(t, χ),
and ∇χΦ(t, χ) = ∇χϕ(t, χ) + ∇χΦFRW(t, χ), where ∇χΦFRW(t, χ) = ä(t)χ, and hence, we
have

v̇(t, χ) +
ȧ(t)

a(t)
v(t, χ) +

1

a(t)
(v(t, χ) ⋅ ∇χ)v(t, χ) = −

1

a(t)
∇χϕ(t, χ) −

∇χp(t, χ)

a(t)ϱ̄(1 + δ(t, χ))

C. Poisson equation, ∇2
rΦ(t, r) = 4πG [ϱ(t, r) + ϱ̄m(t) + 3P̄m(t)

c2 ], we have the simple

transformation,

∇2
χΦ(t, χ) = 4πGa2(t) [ϱ(t, χ) + ϱ̄m(t) +

3P̄m(t)

c2
]

and the perturbation, is heavily simplified, as ∇2
χΦ(t, χ) = ∇2

χϕ(t, χ) + ∇2
χΦFRW(t, χ),

where ∇2
χΦFRW(t, χ = 4πGa2(t) [ϱ̄ + ϱ̄m(t) + 3P̄m(t)

c2 ], thereby,

∇2
χϕ(t, χ) = 4πGϱ̄a2(t)δ(t, χ)





Substituting the perturbations, in the fluid equations, we have

We can separate into relevant quantities, for dark matter and baryons, with the entire set of
coupled equations, as

We note that the perturbed gravitational potential ϕ(t, x) arises from dark matter and baryonic
matter, and we have the respective densities.

We have the approximation, ΩΛ ∼ 6Ωm, and δΛ ≳ δm, such that we have the gravitational
potential sourced by dark matter, and baryons moving in the field of dark matter.

Linear Perturbations

We have, in first order of perturbations, for dark matter, which are decoupled completely from
baryonic matter, as

to independently, have the equation for dark matter, as

δ̈Λ(t, χ) + 2
ȧ(t)

a(t)
δ̇Λ =

3H 2
0

2a3(t)
Ω̄Λ,0δΛ(t, χ)

δ̇(t, χ) +
1

a(t)
∇χ [(1 + δ(t, χ))v(t, χ)] = 0

v̇(t, χ) +
ȧ(t)

a(t)
v(t, χ) +

1

a(t)
(v(t, χ) ⋅ ∇χ)v(t, χ) = −

1

a(t)
∇χϕ(t, χ) −

∇χp(t, χ)

a(t)ϱ̄(1 + δ(t, χ))

∇2
χϕ(t, χ) = 4πGϱ̄a2(t)δ(t, χ)

δ̇Λ(t, χ) +
1

a(t)
∇χ [(1 + δΛ(t, χ))vΛ(t, χ)] = 0

v̇Λ(t, χ) +
ȧ(t)

a(t)
vΛ(t, χ) +

1

a(t)
(vΛ(t, χ) ⋅ ∇χ)vΛ(t, χ) = −

1

a(t)
∇χϕ(t, χ)

∇2
χϕ(t, χ) = 4πGa2(t) [ϱ̄ΛδΛ(t, χ) + ϱ̄mδm(t, χ)] =

3H 2
0

2a(t)
[Ω̄Λ,0δΛ(t, χ) + Ω̄m,0δm(t, χ)]

δ̇m(t, χ) +
1

a(t)
∇χ [(1 + δm(t, χ))vm(t, χ)] = 0

v̇m(t, χ) +
ȧ(t)

a(t)
vm(t, χ) +

1

a(t)
(vm(t, χ) ⋅ ∇χ)vm(t, χ) = −

1

a(t)
∇χϕ(t, χ) −

∇χpm(t, χ)

a(t)ϱ̄m(1 + δm(t, χ))

δ̇Λ(t, χ) +
1

a(t)
∇χvΛ(t, χ) = 0

v̇Λ(t, χ) +
ȧ(t)

a(t)
vΛ(t, χ) = −

1

a(t)
∇χϕ(t, χ)

∇2
χϕ(t, χ) =

3H 2
0

2a(t)
Ω̄Λ,0δΛ(t, χ)



For a flat universe, we have a(t) → 1, such that, δ̈Λ(t, χ) =
3H 2

0

2
Ω̄Λ,0δΛ(t, χ), leading to

exponential solutions in the density contrast, such that δΛ(t, χ) ∼ A exp(t) + B exp(−t) such
that the exponential decay dies at large time scales, such that we have an effective
gravitational instability, such that small perturbations are exponentially blown up.

We have variable separation, such that

δΛ(t, χ) = D(t)f(χ)

such that we have the evolution equation,

D̈(t) + 2
ȧ(t)

a(t)
D =

3H 2
0

2a3(t)
Ω̄Λ,0D(t)

which has solution D(t) ∝ H(a(t)), which is not interesting, in an expanding universe. The other
solution, can be found by the method of Wronskian, such that, in the limit Λ → 0, such that we
have D(t) ∝ a(t). We assume Λ → 0 further, such that, we have the generic solution,
δΛ(t, χ) = D+(a(t))f(χ), such that we normalize, D+(a(t0)) = 1.

The peculiar velocity, can be found out from the continuity equation, as

vΛ(t, χ) ∝ a(t)Ḋ+(a(t)) ∝ a(t)D+(a(t))H(a(t))F(a(t))

such that, we have

F(a(t)) =
d lnD+(a(t))

d ln a(t)

such that, we have the relation F(z) ≈ Ω
t
z

m,0(z).

Further, we can substitute the perturbed potential sourced primarily by dark matter, into the
baryonic matter field, as,

δ̈m(t, χ) + 2
ȧ(t)

a(t)
δ̇m(t, χ) − (

a(t)

a(t)
)

2

∇2
χδm(t, χ) =

3H 2
0

2a3(t)
ΩΛ,0δm(t, χ)

and we also require an equation of state, for complete set of equations. We decompose into
Fourier modes, as

such that, we have,

δ̈m(t, k) + 2
ȧ(t)

a(t)
δ̇m(t, k) + (

a(t)

a(t)
)

2

k2δm(t, k) =
3H 2

0

2a3(t)
ΩΛ,0δm(t, k)

δm(t, k) = ∫ d3χ δm(t, χ) exp(−ik ⋅ χ)

δm(t, χ) =
1

(2π)3
∫ d3k δm(t, k) exp(ik ⋅ χ)



where we assume for small k, the linearized equation for baryonic density contrast δm(t, k),
sourced by both its own gravity and that of dark matter, is

δ̈m(t, k) + 2
ȧ(t)

a(t)
δ̇m(t, k) −

c2
s

a2(t)
∇2

χδm(t, k) = 4πG(ϱ̄Λ(t)δΛ(t, k) + ϱ̄m(t)δm(t, k))

Here, c2
s = ∂pm

∂ϱm
 is the square of the sound speed of the baryonic fluid. Transforming to Fourier

space by replacing ∇2
χ with −k2, where k is the comoving wavenumber, we get the equation for

a single mode δm(t, k), as

δ̈m(t, k) + 2
ȧ(t)

a(t)
δ̇m(t, k) +

c2
sk

2

a2(t)
δm(t, k) = 4πG(ϱ̄Λ(t)δΛ(t, k) + ϱ̄m(t)δm(t, k))

This equation beautifully illustrates the cosmic battle between gravity and pressure. The Jeans
scale is the critical scale that separates these two regimes. For a purely baryonic fluid, the
Jeans wavenumber, kJ , is defined as the scale where baryonic self-gravity is balanced by
pressure given as

4πGϱ̄m(t)

Self-gravity

∼
c2
sk

2
J

a2(t)

Pressure

The corresponding comoving Jeans length is χJ ∼ 1/kJ . Using ϱ̄m(t) = Ωm,0
3H 2

0

8πG a−3, we can
write

k2
J =

4πG(Ωm,0
3H 2

0

8πG a−3)a2

c2
s

=
3H 2

0 Ωm,0

2ac2
s

Perturbations with k < kJ  (scales larger than the Jeans length) are dominated by gravity and
will grow, while those with k > kJ  (smaller scales) are dominated by pressure, causing them to
oscillate as sound waves (Baryon Acoustic Oscillations) instead of collapsing.

We assume that the baryonic perturbations evolve with the dark matter perturbations, which
grow as δΛ(t, k) = D+(t)δΛ,i(k). This implies the time-derivative part of the baryonic equation
can be related to the overall growth of structure

δ̈m(t, k) + 2
ȧ(t)

a(t)
δ̇m(t, k) ≈ 4πG(ϱ̄Λ(t) + ϱ̄m(t))δm(t, k)

Substituting this into the full baryonic equation, we have

4πG(ϱ̄Λ(t) + ϱ̄m(t))δm(t, k) +
c2
sk

2

a2(t)
δm(t, k) ≈ 4πG(ϱ̄Λ(t)δΛ(t, k) + ϱ̄m(t)δm(t, k))

which can be simplified as,






(4πGϱ̄Λ(t) +
c2
sk

2

a2
(t))δm ≈ 4πGϱ̄Λ(t)δΛ(t, k)

Solving for δm(t, k), gives the relation

δm(t, k) ≈
4πGϱ̄Λ(t)

4πGϱ̄Λ(t) +
c2
sk

2

a2(t)

δΛ(t, k) =
δΛ(t, k)

1 +
c2
sk

2

4πGϱ̄Λa2

This expression shows how baryonic perturbations are suppressed relative to dark matter
perturbations on small scales. The effective scale for this suppression depends on the dark
matter density ϱ̄Λ. Thereby, we have

δm(t, k) =
δΛ(t, k)

1 + χ2
J
k2

where χ2
J = 1/k2

J  is defined using the baryonic density ϱ̄m(t).



L01.02 Probing Large Scale Structure
Power spectrum

From our separated variables, δ ≈ δΛ(t, χ) = D(t)f(χ), we have the power spectrum

P(k) ≈ |δ(t − t0, k)|2

such that, we have Pprimordial ∝ kns−4 where ns ∼ 1 as the power law variation.

At low k, there is a deviation from observed behavior, because assumptions of matter
dominated epoch fails, and length scales grows greater than c

H0
.

In the radiation dominated era, we have

δ̈(t, χ) + 2
ä(t)

a(t)
δ̇(t, χ) =

∇2
χϕ

a2(t)
→

k2ϕ

a2(t)

where we have the radiation dominated era, δ(t, χ) → δγ(t, χ), such that, we input the radiation
pressure and solve, to have δγ(t, χ) ∼ ln a(t), thereby, the gravitational instability does not exist.

Gravitational Instability is an extremely rare case of matter dominated universe, at late times,
for smaller spatial separations. Perturbations exist inside Hubble radius only for the matter
dominated case. Evolution of Hubble radius ∼ c

H0
. The turnover exists, when the scale is in

matter dominated era, reaches the Hubble radius, such that, we have k ∼
Ωm,0

Ωγ
.



We can formally, write the power spectral density

P(k) = Ask
nsT 2(k)

where the power law behavior is truncated by the transfer function T (k) which captures the
change of scales and turnover into matter dominated from radiation dominated, and As is the
normalization amplitude.

N-Body Simulations

We use tracers in the spacetime, through a series of

ϱξ(t, r) = ∑
i

mδD(r − ri(t))

such that in comoving coordinates, we have,

ϱξ(t, χ) =
m

a3(t)
∑
i

δD(χ − χi(t))

Thereby, the density contrast, is

δ(t, χ) =
1

m̄
∑
i

δD(χ − χi(t)) − 1

where m̄ =
ϱ̄ξ(t,χ)

m
. Further, for the velocity, we have

u(t, r) =
∑i ṙδD(r − ri(t))

∑i δD(r − ri(t))

where we have ṙ = ȧ(t)χ + a(t)χ̇, such that, we have,

u(t, χ) =
ȧ(t)

a(t)
r(χ) + a(t)

∑i χ̇δD(χ − χi(t))

∑i δD(χ − χi(t))

where, we shall define,

v(t, χ) = a(t)
∑i χ̇δD(χ − χi(t))

∑i δD(χ − χi(t))

Substituting the above in Euler's equation, we have the effective Newton's II Law,

χ̈i(t) + 2
ȧ(t)

a(t)
χi(t) = −

1

a2(t)
∇χϕ(χi)

Rewriting, we have vi(t) = a(t)χ̇i(t), and the effective equation

v̇i(t) = −
ȧ(t)

a(t)
vi(t) −

1

a2(t)
∇χϕ(χi)



where we have to specify the evolution of ϕ through the Poisson's equation,

∇2
χϕ =

3H 2
0

2a(t)
Ωξ,0δξ(t, χ)

which are completely non-linear, where we have the solutions in terms of the Green's function,

ϕ(t, χ) = −
3H 2

0

8πa(t)
Ωξ,0 ∫ d3x′

δξ(t, χ′)

|χ − χ′|
= −

G

a(t)
∑
i

m

|χ − χ′|

Linear Analysis

Define a new potential,

Ψ(t, χ) =
2

3H 2
0 Ωξ,0

a(t)

D+(a(t))
ϕ(t, χ)

from the earlier potential ϕ(t, χ), such that, in the linear case, Ψ(t, χ) is constant, through
evolution, such that Ψ(t, χ) = Ψ0(χ).

Substituting for the velocity equation,

v̇i(t) +
ȧ(t)

a(t)
vi(t) = −

3H 2
0D+(a(t))

2a(t)
Ωξ,0∇χΨ0(χi)

Using our relation, vi(t) = a(t)Ḋ+(a(t))ui(t). On solving, we have

vi(t) = −a(t)Ḋ+(a(t))∇χΨ(χi)

such that we have a linear constant evolution, with a proxy time D+(a(t)), we have
χi = qi − D+(a(t))∇χΨ0(χi). On a variable transformation, by first order perturbation, we have
∇χΨ0(χi) ≈ ∇qΨ0(qi), where the Lagrange transformation leads to,

χ(q) = q − D+(a(t))∇qΨ0(q)

This is an effective field equation, and motion along the tracer particle, termed as the
Zel'dovich approximation. Accurate even in some non-linear cases.

Under the transformation, we have conservation,

ϱξ(t, χ(t, q))[a3(t)d3χ] = ϱξ(t, q)[a3
0(t)d3q]

such that, we have the relation through the Jacobian J (q, χ(q)) = ∂χα

∂qβ
,

ϱξ(t, q) =
a3

0

a3(t)

ϱξ(t, χ(t, q))

|J (q, χ(q))|



Hence, the density functional, in first order, is

ϱξ(t, q) =
a3

0

a3(t)

ϱ0(q)

δαβ − D+(a(t)) ∂ 2Ψ0(χ)
∂qα∂qβ

where we have the deformation tensor, ∂ 2Ψ0(χ)

∂qα∂qβ
. In linear case, we approximate, as

ϱξ(t, q) =
a3

0

a3(t)
ϱ0(q) [1 + D+(a(t))∇2

qΨ0]

We express the eigenvalues of the deformation tensor, ∂ 2Ψ0(χ)

∂qα∂qβ
, as λ1, λ2, and λ3, such that

λ1 ≥ λ2 ≥ λ3, such that, we note

ϱξ(t, q) =
a3

0

a3(t)

ϱ0(q)

[1 − D+(a(t))λ1(q)] [1 − D+(a(t))λ2(q)] [1 − D+(a(t))λ3(q)]

where we have the behavior dependent on the eigenvalues. In the principle direction of the
largest eigenvalue λ1, we have pancake structures, further plane clustering produces filaments,
and we have generic halos.

Spherical Collapse

For the non linear spherically symmetric collapse, we have

χi(t) =
R(t)

a(t)

a0

R0
qi

such that, we have qi = R0

a0
, and we can substitute in the evolutionary equation

χ̈i + 2
ȧ(t)

a(t)
χ = −

∇χϕ(t, χ)

a2(t)

to arrive at

R̈(t) = −
GM

R2
−

4πG

3
(ϱ̄max +

3P̄max

c2
) ≃ −

GM

R2
+ H 2

0 ΩΛR(t)

which shows an effective repulsive effect due to gravity.

We can assume Λ ≈ 0 in the matter dominated universe, such that we set the boundary
conditions, a(t) = a0, and have a shell expanding with Hubble radius, with Ṙ0 ≃ H0R0, such
that,

δ(t) =
1

ϱm(t)

3M

4πR3(t)
− 1 =

2GM

Ωm,0H
2
0

a3(t)

R3(t)

∣ ∣



For matter dominated, we have a(t) ∝ t
2
3 , such that, ȧ(t)

a(t)
∼ 2

3t . Energy condition, required is

E = −
GM

R0
δ0 < 0

such that we need excess matter density, for matter collapse.

Since we have the energy relation,

E =
1

2
Ṙ2 −

GM

R

we can explicitly parameterize, R = A(1 − cos θ) and t = B(θ − sin θ), where it can be derived
that, A = GM

2|E|
, and B = GM

(2|E|)
3
2

, such that we have the non linear density contrast,

δNL =
ϱ

ϱ̄
− 1 =

M
4
3
πA3(1−cos θ)3

1
6πGB2(θ−sin θ)2

− 1 =
9

2

(θ − sin θ)2

(1 − cos θ)3
− 1

where we use A3 = GMB2, which is independent of the energy, thereby, the collapse is
possible independent of energy, when there exists a turnover at maximum R.

For a completely linear theory, we expect no collapse, thereby, we expand t → 0, θ → 0, such

that, we have the linear density contrast, δL(t) ≃ 3θ2

20 , which can be written, as δL(t) ≃ 3
20 (

6t
8 )

2
3 ,

which is reasonable given matter dominated universe. Collapse exists, in a linear excess of the
density contrast.



We can apply the virial theorem at collapse, such that the virial overdentiy δvir is evaluated by
noting the virial radius is half the radius at turnover, Rvir = A, such that, we have δvir = 18π2 − 1

.



L02.01 Probing Large Scale Structure
Statistical Description

ϱ(χ) as the realization from the random field ensemble ϱ(a)(χ). We have the ensemble average
for a point χi, such that

⟨ϱ(χi)⟩ =
1

Nensemble

Nensemble

∑
a=1

ϱ(a)(χi)

For a homogeneous universe, we need the ensemble average to be independent of χi, such
that, we have

⟨ϱ(χi)⟩ = ⟨ϱ⟩

Similar to the Ergodic Hypothesis in statistical mechanics, we now take the volume average,

V ϱ(a)(χ) =
1

V
∫
V

d3x′ ϱ(a)(χ + χ′)

Thereby,

⟨ V ϱ(a)(χ)⟩ = ⟨
1

V
∫
V

d3x′ ϱ(a)(χ + χ′)⟩ =
1

V
∫
V

d3x′ ⟨ϱ(a)(χ + χ′)⟩ = ⟨ϱ⟩

as an effective unbiased estimator.

For the effective estimator, we need the dispersion,

⟨[ V ϱ(a)(χ) − ⟨ϱ⟩]
2
⟩
V→∞

→ 0

which can be shown by noting that, at large scales, for the volume averaged elements, we have
an effective drop in correlation. Thus, at some specific scale, we have negligible dispersion.

We have, at large volumes,

lim
V→∞

V ϱ(a)(χ) = ϱ̄ = ⟨ϱ⟩

as the background fluctuation field, spatially independent. Similarly, the density contrast is

δ(χ) =
ϱ(χ)

⟨ϱ⟩
− 1

with ⟨δ(χ)⟩ = δ̄ = 0.



Two-Point Correlation Function

We represent the density field by effective tracers,

ϱT(χ) = mT

NT

∑
i=1

δD(χ − χi)

with the volume average,

⟨ϱT(χ)⟩ = ϱ̄T = mT

1

V
∫ d3x′ 

NT

∑
i=1

δD(χ − χi) = mT

NT

V
= mT n̄T

For a point χ, the probability of finding a point in δV , is given by,

P1(χ) = lim
δV→0

⟨ϱT(χ)δV ⟩

mT

= lim
δV→0

⟨ϱT⟩

mT

δV

Further, the probability of finding a point in δV1 and δV2, at points χ1, χ2, is

P12(χ1, χ2) = lim
δV1,δV2→0

⟨ϱT(χ1)δV1ϱT(χ2)δV2⟩

m2
T

= lim
δV1,δV2→0

n̄2
T

ϱ̄2
T

⟨ϱT(χ1)ϱT(χ2)⟩δV

such that, we can re-express, as

P12(χ1, χ2) = n̄2
T

[1 + ξT(χ1, χ2)]δV1δV2

where we have the two-point correlation function, given as

ξT(χ1, χ2) =
⟨ϱT(χ1)ϱT(χ2)⟩

ϱ̄2
T

− 1

which is also given in terms of the density contrast, as

ξT(χ1, χ2) = ⟨δT(χ1)δT(χ2)⟩

For the tracers, we have

Hence, the two-point correlation is,

⟨ϱT(χ1)ϱT(χ2)⟩ = ⟨mT

NT

∑
i=1

δD(χ1 − χi)mT

NT

∑
j=1

δD(χ2 − χj)⟩

= m2
T

⟨
NT

∑
i=1

NT

∑
i=j

δD(χ1 − χi)δD(χ2 − χj)⟩ + m2
T

⟨
NT

∑
i=1

NT

∑
i≠j

δD(χ1 − χi)δD(χ2 − χj)⟩

= ϱ̄2
T

+ m2
T
⟨δD(χ1 − χ2)⟩



ξT(χ1, χ2) =
⟨ϱT(χ1)ϱT(χ2)⟩

ϱ̄2
T

− 1 =
1

n2
T

δD(χ1 − χ2)

where we have neglected the contribution from shot noise, and considered the relative terms.

We now impose homogeneity of the universe to constrain ξT(χ1, χ2) = ξT(χ1 − χ2), as a
function of the relative distance. Further, spatial isotropy implies, ξT(χ1, χ2) = ξT(|χ1 − χ2|),
removing the angular and directional dependence.

Fourier Space

We have the transformation,

δT(k) = ∫ d3x δT(χ) exp(−ik ⋅ χ)

with the constraint δ∗
T (k) = δT (−k), since δT (χ) is real. The ensemble average for δT (k), can be

seen as

⟨δT (k)δ∗
T (k′)⟩ = ⟨∫ d3x δT(χ) exp(−ik ⋅ χ) ⋅ ∫ d3x′ δT(χ′) exp(ik′ ⋅ χ′)⟩

which can be simplified, as

By change of variables, we arrive at,

⟨δT (k)δ∗
T (k′)⟩ = (2π)3δD(k − k′)∫ d3y  exp(−ik ⋅ y)ξT(y)

Define the Power spectrum, such that

PT(k) = ∫ d3x ξT(χ) exp(−ik ⋅ χ)

such that, we have the correlation function Fourier transform. We note,

⟨δT (k)δ∗
T (k′)⟩ = (2π)3δD(k − k′)PT(χ)

By isotropy, we simplify the power spectral density, as

⟨δT (k)δ∗
T (k′)⟩ = ∫ d3x d3x′ ⟨δT(χ)δT(χ′)⟩

ξT(χ,χ′)

exp(−i[k ⋅ χ − k′ ⋅ χ′])

= ∫ d3x d3x′ ξT(χ − χ′) exp(−i[k ⋅ χ − k′ ⋅ χ′])



PT(k) = ∫ d3x ξT(|χ|) exp(−ik ⋅ χ)

= ∫
∞

0
dx 4πx2 ξT(x) 

sin kx

kx



thus, the power spectral density PT(k) = PT(x). Similarly, the correlation function,

ξT(χ) = ∫
∞

0

dk

k
 
Δ2

T
(k)

2π2

sin kx

kx

where Δ2
T

(k) = k3PT(k) is the dimensionless power spectrum, such that it captures the
behavior of the effective power in the correlation function, in logarithmic bins of d ln k = dk

k .

For the effective tracers, we have the power spectrum given as, the normalized power spectrum
and the contribution arising from shot noise.

Angular Projections

For a comoving distance χ(z), subtending an effective solid angle Ω, in a small volume δV , we
have

χ(z) = c∫
z

0

dz′

H(z′)

such that, the volume element is δV = χ2dχdΩ.

We have the mass, δMT = ϱT(χ)δV = ϱT(χ, Ω)χ2dχdΩ, where we have the projected density
on the angular space. Thereby, at an solid angle, we have,

ϱT|Ω =
δMT

dΩ
= ∫ dχ χ2ϱT(χ, Ω) = ∫ dz 

∂χ

∂z
χ2ϱT(χ, Ω)

Spherical Harmonics

Further, we expand the density contrast in terms of effective spherical harmonics,

δT|Ω =
ϱT|Ω

ϱ̄T

− 1 =
N

∑
ℓ=0

ℓ

∑
m=−ℓ

aℓmYℓm(Ω)

The coefficients aℓm of a function expanded in spherical harmonics are found by projecting
the function onto the corresponding spherical harmonic basis function Yℓm(Ω̂). This is done
using the orthogonality property of the spherical harmonics. The expansion is given by

δT|Ω =
∞

∑
ℓ=0

ℓ

∑
m=−ℓ

aℓmYℓm(Ω̂)

The coefficients are thus calculated as

aℓm = ∫ dΩ̂ δT|ΩY
∗

ℓm(Ω̂)

where the integral is over the entire solid angle.



We now substitute the definition of the projected density contrast,
δT|Ω = ∫ dχχ2S(χ)δT(χ, Ω̂), into the expression for aℓm,

aℓm = ∫ dΩ̂ [∫
∞

0

dχχ2S(χ)δT(χ, Ω̂)]Y ∗
ℓm(Ω̂)

By swapping the order of integration, we arrive at the expression for aℓm in terms of the
matter density contrast δT(χ), where the position vector is χ = χΩ̂,

aℓm = ∫
∞

0
dχχ2S(χ)∫ dΩ̂ δT(χ, Ω̂)Y ∗

ℓm(Ω̂)

This is the expression for the coefficients in real space.

Let's express the matter density contrast δT(χ) in terms of its Fourier transform ~δT(k), as

δT(χ) = ∫
d3k

(2π)3

~
δT(k) exp{ik ⋅ χ}

We use the Rayleigh plane wave expansion for exp{ik ⋅ χ} in terms of spherical Bessel
functions jℓ and spherical harmonics Yℓm, given by,

exp{ik ⋅ χ} = 4π
∞

∑
ℓ′=0

ℓ′

∑
m′=−ℓ′

iℓ′

jℓ′(kx)Yℓ′m′(x̂)Y ∗
ℓ′m′(k̂)

Substituting this into our expression for aℓm with χ = χΩ̂ gives

aℓm = ∫
∞

0
dχχ2S(χ)∫ dΩ̂ [∫

d3k

(2π)3

~
δT(k) (4π∑

ℓ′m′

iℓ′

jℓ′(kχ)Yℓ′m′(Ω̂)Y ∗
ℓ′m′(k̂))]Y ∗

ℓm(Ω̂)

Rearranging the integrals and sums, we have

aℓm = ∫
d3k

(2π)3

~
δT(k) [4π∑

ℓ′m′

iℓ′

Y ∗
ℓ′m′(k̂)∫

∞

0
dχχ2S(χ)jℓ′(kχ)(∫ dΩ̂Yℓ′m′(Ω̂)Y ∗

ℓm(Ω̂))]

The inner integral over the solid angle dΩ̂ is simplified by the orthogonality relation
∫ dΩ̂Yℓ′m′(Ω̂)Y ∗

ℓm(Ω̂) = δℓℓ′δmm′ . This collapses the sum over ℓ′ and m′ to a single term
where ℓ′ = ℓ and m′ = m. Thereby,

aℓm = ∫
d3k

(2π)3

~
δT(k) [4πiℓY ∗

ℓm(k̂)∫
∞

0
dχχ2S(χ)jℓ(kχ)]

Defining a radial transfer function Δℓ(k) = ∫ ∞
0

dχχ2S(χ)jℓ(kχ), the final expression for the
coefficient is

aℓm = 4πiℓ ∫
d3k

(2π)3

~
δT(k)Δℓ(k)Y ∗

ℓm(k̂)



The angular power spectrum Cℓ is defined from the two-point correlation function of the
harmonic coefficients

⟨aℓma
∗
ℓ′m′⟩ = Cℓδℓℓ′δmm′

where the angle brackets ⟨⋅⟩ denote an ensemble average.

We use the Fourier space expression for aℓm,

aℓm = 4πiℓ ∫
d3k

(2π)3

~
δT(k)Δℓ(k)Y ∗

ℓm(k̂)

and the complex conjugate,

a∗
ℓ′m′ = 4π(−i)ℓ′

∫
d3k′

(2π)3

~
δ∗

T
(k′)Δℓ′(k′)Yℓ′m′(k̂′)

The expectation value is then,

⟨aℓma
∗
ℓ′m′⟩ = (4π)2iℓ−ℓ′

∫
d3k

(2π)3
∫

d3k′

(2π)3
⟨
~
δT(k)

~
δ∗

T
(k′)⟩Δℓ(k)Δℓ′(k′)Y ∗

ℓm(k̂)Yℓ′m′(k̂′)

The correlation of the Fourier modes of the density contrast defines the matter power
spectrum P(k), as defined earlier,

⟨
~
δT(k)

~
δ∗

T
(k′)⟩ = (2π)3P(k)δ(3)(k − k′)

where δ(3) is the three-dimensional Dirac delta function. Substituting this into our
expression,

⟨aℓma
∗
ℓ′m′⟩ = (4π)2iℓ−ℓ′

∫
d3k

(2π)3
P(k)Δℓ(k)Δℓ′(k)Y ∗

ℓm(k̂)Yℓ′m′(k̂)

The integral over k′ was eliminated by the Dirac delta function, which sets k′ = k.

We now express the integral over d3k in spherical coordinates, d3k = k2dkdk̂, thereby,

⟨aℓma
∗
ℓ′m′⟩ =

(4π)2

(2π)3
iℓ−ℓ′

∫
∞

0
k2dkP(k)Δℓ(k)Δℓ′(k)∫ dk̂ Y ∗

ℓm(k̂)Yℓ′m′(k̂)

Using the orthogonality of spherical harmonics, ∫ dk̂ Y ∗
ℓm(k̂)Yℓ′m′(k̂) = δℓℓ′δmm′ , the

expression simplifies to

⟨aℓma
∗
ℓ′m′⟩ =

16π2

8π3
iℓ−ℓ′

δℓℓ′δmm′ ∫
∞

0
k2dkP(k)Δℓ(k)Δℓ′(k)

The Kronecker delta δℓℓ′  ensures that the term is non-zero only when ℓ = ℓ′, which makes



When we have redshift information through a selection function, we have

ϱT|Ω = ∫ dχ χ2S(χ)ϱT(χ, Ω)

with appropriate normalization for the selection function

∫ dχ χ2S(χ) = 1

For the projected correlation function, we have

ωT|Ω1,Ω$
=

⟨ϱT|Ω1
ϱT|Ω2

⟩

ϱ̄2
T

− 1

where the average of the projected function is equal to the average of the density function.
Evaluating it, we have,

ωT|Ω1,Ω$
=

1

ϱ̄2
T

⟨∫ dχ1 χ2
1S(χ1)ϱT(χ1, Ω1) ⋅ ∫ dχ2 χ2

2S(χ2)ϱT(χ2, Ω2)⟩ − 1

where we can use explicit assumption of flat space, by approximating the relative vector, as

χ12 = √χ2
1 + χ2

2 − 2χ1χ2 cos θ ≈ χ1 − χ2

such that we can simplify extensively.

Smoothed Cosmic Fields

Smoothed density field,

δT|X(χ) = ∫ d3y δT(y)WX(y − χ)

with an appropriate window function WX for a manifold X.

the factor iℓ−ℓ′

= i0 = 1 and Δℓ′(k) = Δℓ(k). We have,

⟨aℓma
∗
ℓ′m′⟩ =

2

π
δℓℓ′δmm′ ∫

∞

0

k2dkP(k)[Δℓ(k)]2

By comparing this result with the definition ⟨aℓma
∗
ℓ′m′⟩ = Cℓδℓℓ′δmm′ , we can identify the

angular power spectrum Cℓ,

Cℓ =
2

π
∫

∞

0

k2dkP(k)[∫
∞

0

dχχ2S(χ)jℓ(kχ)]
2



We have the convolution with the Window function, being simplified as a product in the Fourier
space as

δT|X(k) = δT(k)
~
WX(−k)

We have the ensemble average ⟨δT|X⟩ = 0, and ⟨δ2
T

|X⟩ relating the power spectral density, as

⟨δ2
T

|X⟩ = ∫
d3k

(2π)3
PT(k)|

~
WX(k)|2

If we have a Gaussian uncertainty smoothening, we have

ϱT(χ) ∼ ∑
i

exp [−
1

2

|χi − χ2|

2σ2
χ

]

where we normalize the Gaussian, with the expression for the total number of tracers in the
observed volume giving ρT, such that,

∫  d3χ ϱT(χ) = ρT

thereby, giving us,

ϱT(χ) =
1

(2πσχ)
3
2

∑
i

exp [−
1

2

|χi − χ2|

2σ2
χ

]

The correlation function, and the power spectrum, due to the convolution of the Gaussian
windowing, are suppressed by the Gaussian noise, by the exponential factor exp(−σ2

χk
2),

where the suppression is large at large k which corresponds to smaller scales.



L03.01 Probing Large Scale Structures
Simulations

Gaussian Field

For N  points, x1, x2, … , xn, we have δT(x) → δT,i for i = 1, 2, … ,n. We have the probability
distribution,

P(δT,1, δT,2, … , δT,n) =
1

(2π)
N
2 |C|

1
2

exp [−
1

2

N

∑
i,j=1

δT,iC
−1
ij δT,j]

is a linear, implied Gaussian random field, with Cij = ⟨δT,iδT,j⟩ is the covariance matrix, given
equivalently by the two-point correlation function, Cij = ξ(xi, xj). For a Gaussian random field,
the higher order moments are completely determined by the two-point correlation function, and
the mean.

We have the the individual probability distributions, for the initial densities, given by,

P(δT) =
1

√2πσT

exp [−
1

2

δ2
T

2σ2
T

]

where σ2
T

= ⟨δ2
T
⟩ as the variance, which shows the power spectrum, as an effective diagonal

covariance matrix. We further, perform the smoothing through appropriate window functions,
where we realize that, the windowed density function, is a weighted sum of Gaussian random
densities, such that, we have

P(δT,X) =
1

√2πσT(X)
exp [−

1

2

δ2
T,X

2σ2
T

(X)
]

Further, in the frequency domain, we realize the independence of different wave modes, such
that the power spectrum is diagonal, to have

⟨δ(k1)δ(k2)⟩ ∝ δD(k1 + k2)

Linearly Extrapolated Field

We can expand the complete non-linear spectrum in terms of the linear Gaussian random
density field as,

δT(z, k) = D+(a(z))δT(z = 0, k)

δT(k)




where δT(k) is the Gaussian field, with the encapsulation of the transfer function T (k). We have
the power spectral density and the variance, given by the evolution,

with the variance dependent on the window function used on the manifold.

Halos

Consider early times, with minimal perturbations, zini ≫ 1, such that, we have

δT(zini, x) → PT(zini, x)

which we further smoothen with a window function WX(x), such that, we have

δT,X(zini, x) = ∫ d3y δT(zini, x + y)WX(y)

which we can evolve to present time, such that,

δT,X(z, x) =
D+(a(z))

D+(a(zini))
δT,X(zini, x)

where we can prescribe an effective mass for the region of radius X, with a spherical window
function, such that

~
M =

4π

3
(ainiX)3ϱT(zini)

where a3ϱT,X(zini) gives the current density field, ϱ̄T(z). We have the critical density for
spherical collapse, as δcrit, thereby, we have densities, with larger overdensity to have spherical
collapse, as

δT,X(z, x) > δcrit

such that, we note the ensemble fraction where we observe collapse.

We can find the fraction of mass within collapsed halos of mass M >
~
M, at z, given by the

Gaussian cumulative distribution function,

Pcollapse(z,M >
~
M) =

1

√2πσT(z,X)
∫

∞

δcrit

dδT,X(z)  exp [−
1

2

δ2
T,X

σ2
T

(z,X)
]

where we evaluate for overdense regions where we expect spherical collapse. The probability

PT(z, k) = D2
+(z)Pprim(k)T 2(k)

PT(k)

σT(z,X) = D2
+(z)σT(X)





can be evaluated by the complementary erfc function, such that,

Pcollapse(z,M >
~
M) =

1

2
erfc [

δcrit

√2σT(z,X)
] =

1

2
erfc [

δcrit(z)

σT(X)
]

where we have defined δcrit(z) = δcrit

D+(a(z))
 as the effective critical density at current redshift. Note

that, due to not being normalized, we have

lim
M→0

Pcollapse(z,M >
~
M) = lim

M→0

1
2

erfc
δcrit(z)

σT(X)

σT(M)

→
1
2

which can be fixed. This relates to the Press-Schechter relation.

We have the mass function ∂n
∂M

 as the number density over mass of halo states, given as

Pcollapse(z,M >
~
M) =

1

ϱ̄T(zini)
∫

∞

M

dM ′ M ′ ∂n

∂M ′

where we can derive analytically, the expression for the mass function, as

∂n

∂M
= √ 2

π

ϱ̄T(zini)

M

∂σT(M)

∂M

δcrit(z)

σ2
T

(M)
exp [−

1

2

δ2
crit(z)

σ2
T

(M)
]

where we realize that the derivation required Linear Perturbation theory, Spherical collapse, and
dynamics of random Gaussian field.

Criticality

We can rewrite the expression of the mass function,

∂n

∂M
= √ 2

π

ϱ̄T(zini)

M

∂ lnσT(M)

∂M
ν exp [−

1

2
ν 2]

where ν = δcrit(z)
σT(M)

.

Let M∗, such that σT(M∗) = δcrit(z), such that, we have for M < M∗, we have a power law
behavior, and for M > M∗, we have an exponential cutoff, that is ν < 1 and ν > 1 respectively.

The mass function integrates to the total number of halos in the universe, where we assume
collisionless mass function. Here all properties of the halos are assumed to be dependent solely
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on the mass. Similar analysis for ellipsoidal collapse is Sheth-Tormen mass function.



L03.02 Probing Large Scale Structure
Statistics and Correlations

Clustering

We recall, the effective mass function with the number of halos per unit comoving volume,
concerning per unit mass, ∂n

∂M  determined as the average

n̄M(z) =
∂n

∂M

where we can define the density contrast,

δH(x,M, z) =
nM(x, z)

n̄M(z)
− 1

We can explain clustering for overdense regions by understanding the peak-background split,
such that we have smaller push for short wavelength modes, superimposed on longer
wavelength modes, for regions of positive density contrast. Formally,

nM(x, z) = √ 2

π

ϱ̄T(zini)

M

∂ lnσT(M)

∂M
ν exp [−

1

2
ν 2]

where we have

ν =
δcrit − δT(x)

D+(a(z))σT(M)

We now expand, for lower orders,

Thereby, the density contrast, for halos at a particular redshift, is given by,

δH(x,M) =
ν 2 − 1

δcrit
δT(x)

where we have the definition, b(M) = ν 2−1
δcrit

, as the linear halo bias. Thereby, the correlation∣ ∣nM(x, z) = nM(x, z)
δT(x)=0

+
∂nM(x, z)

∂δT(x) δT(x)=0

δT(x) + O(δ2
T

(x))

= n̄M(x) +
∂nM(x, z)

∂ν

∂ν

∂δT(x) δT(x)=0

δT(x) + O(δ2
T

(x))

= n̄M(x) [1 +
ν 2 − 1

δcrit
δT(x)] + O(δ2

T
(x))∣ ∣∣



function,

ξH(x1 − x2|M1,M2) = ⟨δH(x1,M1)δH(x1,M2)⟩ = b(M1)b(M2)ξT(x1 − x2)

If we were to look at the correlation density profile for masses M > Mmin, we have,

ξH(x1 − x2|Mmin) =
∫

∞
Mmin

dM1  ∂n
∂M1

∫
∞
Mmin

dM2  ∂n
∂M2

ξH(x1 − x2|M1,M2)

∫ ∞
Mmin

dM1  ∂n
∂M1

∫ ∞
Mmin

dM2  ∂n
∂M2

where we have weighted by the explicit mass profile through the mass function. We can
simplify, as

ξH(x1 − x2|Mmin) =
∫

∞
Mmin

dM1  ∂n
∂M1

b(M1) ∫
∞
Mmin

dM2  ∂n
∂M2

b(M2)

∫ ∞
Mmin

dM1  ∂n
∂M1

∫ ∞
Mmin

dM2  ∂n
∂M2

ξT(x1 − x2) = β2(Mmin)ξT(x1 − x2)

where

β(Mmin) =
∫

∞
Mmin

dM   ∂n
∂M b(M)

∫ ∞
Mmin

dM   ∂n
∂M

The physical picture is that clustering is excessive in regions of overdensity, and voids remain
greatly deprived of halos. The bias factors the matter tracer densities over the halo density,
which provokes higher correlation at greater masses.

Gravitational Wave Events

Rates and Numericals

We compute the number of mergers per chirp mass dM, per unit stellar mass dM∗, given by

dNmerge(M, z)

dMdM∗

Noting the merger formation rate Ψ = Ṁ∗, we have the number of mergers per dM, per unit
time, as

Ψ
dNmerge(M, z)

dMdM∗

Thereby, the number of mergers per dM, per unit time, integrating over the halo mass rate, per
unit comoving volume, in the source frame,

∫ dΨ Ψ
dNmerge(M, z)

dMdM∗

∂n(M, z)

∂M

∂M

∂Ψ

We now, convert from redshift to the comving volume, dV

dz
= 4πχ2(z) dχ

dz
, where dχ

dz
= c

a(z)
, is the

transformation. Accounting for time dilation due to gravitational redshift, we have, the



transferred rate of mergers per unit dM in observer's frame per dz since we have converted
from comoving volume, to arrive at

1

1 + z

dV

dz
∫ dΨ Ψ

dNmerge(M, z)

dMdM∗

∂n(M, z)

∂M

∂M

∂Ψ

Further crucial considerations are to include the delay time between the formation of a star, due
to the age of a star, formation of a common envelope, both of which are minute compared to
cosmic scales, and the effective merger time scale, that can be extensively long. Accounting for
the time delay due to a probability distribution,

dNmerge

dtobsdMdz
=

1

1 + z

dV

dz
∫ dτdelay p(τdelay) ∫ dM  Ψ

dNmerge(M, z)

dMdM∗

∂n(M, z)

∂M

where we have parametrically accounted for the time delay function.

Further, for clustering, we have,

dNmerge

dtobsdMdzdM
=

1

1 + z

dV

dz
∫ dτdelay p(τdelay)Ψ(M, z)

dNmerge(M, z)

dMdM∗

∂n(M, z)

∂M

where we account for the bias with respect to given mass M, as

bGW(z) =
∫ dM  b(M, z)

dNmerge

dtobsdMdzdM

∫ dM  
dNmerge

dtobsdMdzdM

where we have weighted the bias due to halos, with the merger rate per unit chirp mass, per
unit observation time, in a range of redshift, for a halo mass bin.



L04.01 Probing Large Scale Structure
Gravitational Waves

Rates

Recap, we have the rate of mergers,

dNmerge

dtobsdMdzdM
=

1

1 + z

dV

dz
∫ dτdelay p(τdelay)Ψ(M, z)

dNmerge(M, z)

dMdM∗

∂n(M, z)

∂M

where we must further select for SNR, the differences in redshift, timescales of halo formation
and star formation, and neglecting halo merger.

Neglecting these assumptions, we have the bias with respect to given mass M, as

bGW(z) =
∫ dM  b(M, z)

dNmerge

dtobsdMdzdM

∫ dM  
dNmerge

dtobsdMdzdM

where we have weighted the bias due to halos, with the merger rate per unit chirp mass, per
unit observation time, in a range of redshift, for a halo mass bin.

Lensing

We must account for magnification bias, shear due to lensing. We have the effective
gravitational wave density spike due to density,

δobs
GW ≈ δGW + (5s − 2)∫

zSource

0
dz K(zSource, z)δT

K

where we have the convergence kernel K, with the comoving source redshift zSource, and the
slope of the observed halo density s.

The power spectrum and correlation functions are additionally smoothened, due to smear in the
angular coordinates due to lensing.

Additional Effects

The presence of peculiar velocities affect the redshift of an object and hence the determination
of distances using the standard Hubble-Lemaitre law. The relation between comoving distance





and the cosmological redshift zCosmo, is

χ(zCosmo) = ∫
zobs

0

dz
c

H(z)

and the redshift arising from peculiar velocity is

zp = √
1 + vr/c

1 − vr/c
− 1

where vr is the radial component of the peculiar velocity. The total redshift is

1 + zobs = (1 + zCosmo)(1 + zp)

In case of non-relativistic velocities and small redshifts, the relation simplifies to

zobs ≈
H0r

c
+

vr

c

which is valid only in the nearby universe and has to be modified for high redshifts.

We further have the notion of the redshift distance, related to the physical distance, by

s = r +
v ⋅ r̂

H0
r̂

which is derived from the Hubble-Lemaitre law. The object will seem nearer in the redshift
space when it is moving towards us compared to the Hubble expansion.

We have the effects of peculiar velocities, with large scale structures compressed in redshifted
space, while small scale structures are elongated, in a finger-of-God effect.



For a large radius within which the overdensity is small, the expansion of the mass shell is
decelerated but its peculiar velocity is still too small to compensate for the Hubble expansion. In
redshift space the mass shell will then appear squashed along the line-of-sight when observed
from a distance much larger than its size.

A mass shell with linear overdensity δ ∼ 1 is just turning around at the time it is observed, so its
peculiar infall velocity is exactly equal to the Hubble expansion velocity across its radius. In
redshift space this shell appears completely collapsed to an observer at large distance.



A mass shell which has already turned around has a peculiar infall velocity which exceeds the
Hubble expansion across its radius. If this infall velocity is less than twice the Hubble expansion
velocity, the shell appears flattened along the line-of-sight, but with the nearer side having
larger redshift distance than the farther side.

At smaller radii the peculiar infall velocities of collapsing shells are much larger than the
relevant Hubble velocites and are randomised by scattering effects. The structure then appears
to be elongated along the line-of-sight in redshift space (a *finger-of-God” pointing back to the
observer).

Density Contrast in the Redshift Space

It is usually the case that the scale of perturbations is much smaller than the distance from us.
In that case one can use the plane parallel approximation and construct a local Cartesian
coordinate system. We have,

s = r +
vz

H0
ẑ

Using the conservation of mass (or equivalently the conservation of galaxy counts), we can
write,

ϱ
(s)
T

(s)d3s = ϱT(r)d3r

Hence, the density contrasts, relate as,

[1 + δ
(s)
T

(s)]d3s = [1 + δT(r)]d3r

We relate the coordinate transformation by the Jacobian in the z component,

∂sα

∂rβ
= 1 +

1

H0

∂vz
∂rz

Hence,

[1 + δ
(s)
T

(s)] = [1 + δT(r)](1 +
1

H0

∂vz
∂rz

)
−1

For the linear approximation, in first order,

δ
(s)
T

(s) ≈ δT(r) −
1

H0

∂vz
∂rz∣ ∣



We can now work in the Fourier space, to arrive at

where β relates to the bias weighted by the form function. Define μk = k2
z

k2 , such that cos θ = μk

where θ is the angle between k and the line of sight. Thereby, we have,

δ
(s)
T

(k) ≈ δT(k)[1 + βμ2
k
]

which relates the density contrasts in the real and redshift spaces. The power spectra are
related, as

P (s)(k) ≈ P(k)[1 + βμ2
k
]2

showing that the effect of redshift space is to make the power spectrum anisotropic. This effect
at large scales is the Kaiser effect.

δ
(s)
T

(k) ≈ δT(k) −
ikz

H0
vz(k)

≈ δT(k)(1 + β
k2
z

k2
)


