
01.01 Introduction to GW Science
GW Foundations

Perturbations of the flat spacetime metric about a background:

gμν = ημν + hμν

where hμν = Aμν exp(ι2πft) is the transverse traceless tensor, with two polarizations
(independent degrees of freedom).

Detectors

Weber's Bar Detector: Giant metal chunk with strain gauges. Sensitive to resonant
frequencies, narrow sensitivity.

Michelson Interferometer: Freely-falling masses. Sensitive to mechanical frequencies.

LIGO: Fabry-Perot cavities, with Michelson Interferometers. 4km Fabry-Perot cavity. Scales
the metric perturbations h = ΔL

L . Also aids coherence by the frequency as the inverse of the
time period between end points. Effective length ∼ 106 m, effective 300 Hz. Noise cutoffs.

Comeback! ​

The Moon is a resonant sphere!



Multiple detectors help in triangulation, through relative delays in arrival time on the detector.
SIngle detector analysis results in overall sky location with maxima and minima dependent
on detector characteristics. Sky location through two detectors characterized by a ring
(hyperbola) on the celestial sphere. Highly constained sky localiztion on all three detectors.

Sources

Source Morphology:

Binary formation channels:

Waveforms

https://arxiv.org/abs/gr-qc/0211028

h+ = A+(t) exp(ι2πf+(t)t)

h× = A×(t) exp(ι2πf×(t)t)

Anything with a changing mass asymmetry
BInary Black Holes/ Neutron Stars h ∼ O(10−21) with f ∼ O(102) Hz

Strongest sources are heavy and move quickly: compact BBH, BNS, NSBH.
Other compact sources: Spinning quadropolar neutron stars, Supernova explosions,
Hyperbolic encounters, Astrophysical foreground due to CBCs

Isolated evolution
Dynamical Capture in dense clusters
Active Galactic Nuclei assisted mergers

https://arxiv.org/abs/gr-qc/0211028


Assume circular orbit and quadroplar moment of inertia tensor

I() ∼ μR2 exp(ιΩt)

The strain is thereby

h() ∼
2GÏ()

c4d

where we take the retarted time t − d
c . Further assuming Keplerian orbits, we take Ω2 = GM

R3 ,
thereby we have
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The luminosity, given by the loss in energy is
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Loss of circular orbit, by reducing the radial separation, can be found from the gravitational
potential change V = − GM

R
 and dE
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Thereby, we have
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hence solving,
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Hence, we compute the quadrupole frequency of radiation from the orbital frequency,
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For accuracy, Post Newtonian expansions, order by order. Numercial Relativity.

Approximation breaks down for late inspiral, when the decay is fast and non quasi circular.

τ =
R
dR
dt

= Porb =
2

fGW

Waveforms parameterization:

https://arxiv.org/abs/gr-qc/0211028


Overall, 15 parameter modelling, with time/frequency, such that

h(t/f) = F+h+ + F×h×

GW Astronomy

Intrinsic parameters:
Source masses m1,m2

Spin Vectors →a1, →a2

Extrinsic parameters:
Source Orientation (inclination) ι
Antenna Patterns (polarization and phase of coalescence) ψ,ϕ

Equatorial Coordinates (right ascension and declination) α, δ

Luminosity Distance dL
Consequential alignment of orientation results in maximal coverage in relative parallel
directions.

Non attenuation, propagation is free
May undergo refraction, gravitational lensing
Sensitivity depends on loudness of signal relative to noise



Detection Range, proportional to distance, dependent on source

Detection volume higher, larger Detection rates



01.02 Introduction to Fourier analysis, Noise
Sensitivity

Strain data

h(t) = s(t) + n(t)

Sampling

Minimum necessary sampling frequency is twice the frequency of the gravitational wave, by
the Nyquist Shannon-Sampling Theorem, thereby

fs =
1

Δt
= 2fmax

since the sampling requires accuracy to prevent aliasing and misinterpretation.

Fourier Space

Fourier transformation of data,

F(h) :=
~
h(f) = ∫

∞

−∞
h(t) exp(−ι2πft)dt

For finite length of signals, we use a window function

ω(t) = {

such that F{g(t)} = ~g(f) = (
~
h ⋆ ~ω)(f), hence F{h(t)} ≠

~
h(f).

Windowing causes erroneous effects due to spectral leakage in the frequency domain,
choice of better windows. Special window functions including rectangular, hanning.
Gaussian. Attenuates lot of valid data. To incorporate overlapping techniques to minimize
data loss through segment.

For Michelson interferometer, we have the strain h := Δl
L

∼ λLaser

l
∼ O(10−9)

Fabry-Perot cavity for increasing effective path length h ∼ Δl
leff

= λLaser

λGW
∼ O(10−12), since

the threshold comes by the wavelength of the GW wave.
Fraction of fringe-width due to intensity of fluctuations of photons. Photon Poisson
statistics, Δl ∼ λLaser

√Nphotons
, such that the number of photons, collected in one cycle

N = P
hc

λLaser

τGW = P
hc

λLaser

1
fGW

, thereby, h ∼ Δl
leff

= λLaser

√NphotonsλGW

∼ O(10−20).

1 0 ≤ t ≤ T

0 otherwise



Note the Ergodic theorem Implies

⟨h2⟩ = lim
T→∞

1

T
∫

T

0
h2(t) dt

Further, the Parseval's theorem implies,

⟨h2⟩ = lim
T→∞

1

T
∫

T

0
h(t) exp(ι2πft) ∫

∞

−∞
h(t′) exp(−ι2πft′)dt′ = lim

T→∞
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T
∫

∞

−∞
|
~
h(f)|2 df

We define the Power Spectral Density as

Sn(f) = lim
T→∞

2

T
∫

T

0

h(t) exp(−ι2πft) dt
2

such that

⟨h2⟩ = ∫
∞

0
Sn(f) df

The power spectral density is reexpressed as

Sn(f) = 2 ∫
∞

−∞
R(τ) exp(−ι2πfτ)dτ

where the autocorrelation function

R(τ) = lim
T→∞

1

T
∫

T

0
h(t)h(t + τ)dt

Thereby, in the frequency domain,

⟨
~
h∗(f ′)

~
h(f)⟩ = ∫

∞

−∞
h(t) exp(−ι2πft)dt∫

∞

−∞
h(t′) exp(−ι2πft′)dt′

such that, we have

⟨
~
h∗(f ′)

~
h(f)⟩ ==

1

2
Sn(f)δ(f − f ′)

If Sn(f) = S0 is constant with f, white noise, else coloured noise. Welch method used for
PSD estimation, for repeated segmentation through windowing. Standard duration and
overlap fixed, with Hann windowing.

Assuming wide sense stationery noise, to have

⟨n(t)⟩ = ⟨n(t + τ)⟩

with same mean, and same covariance (ergodic random process)

C(τ) = ⟨n(t)n(t + τ)⟩ = ⟨n(t′)n(t′ + τ)⟩

∣ ∣



such that we have the distribution

p[n(t)] =
1

(2π)
N
2 √detC

exp(−
1

2
→nTC−1

→n)

where Cij = ⟨ninj⟩.

There can exist non-Gaussianities, non-stationarities in the data, which cause spurious
spectral issues. Segmenting the data can prevent Gibbs effect.

Time frequency analysis proceeded by Spectograms and Q-transforms. Distribution of signal
power across time and frequency domains. Uniform tile windows for spectrograms, and
variable-sized windows that scale with frequency for Q-transforms, where lower frequencies
have longer windows for better frequency resolution through logarithmic tiling. Re-weighting
the data with respect to PSD.

~
h(f) →

~
h′(f) =

h(f)

√Sn(f)



02.01 Science with CBCs
Stellar Physics

Population Studies

Compactness with massive structures O(10 − 100) M⊙, fast moving.
Stellar evolution resulting in heavy mass black holes

Merger in early age of the universe, accretion disk radiating emission
Interesting physics of intermediate masses, resulting in a lower mass gap around
3 − 5 M⊙, but events observed. Further upper mass gap around 60 − 150 M⊙.
Hierarchical mergers, sequential explanations
Nuclear equation of state, through neutron star analysis of tidal deformability Λ

Astrophysical distribution of merger rate as function of primary black hole masses:
Peak near 40 M⊙, likely because pulsational pair instability supernova, and drop due to
pair instability supernova.
Core collapse supernova due to surplus nuclear pressure due to compression and
rebounding. Neutron stars due to protons fusing to form, and further collapse.
Photons pair production γ → e+ + e−, decrease in pressure and compression, no
remnant due to pair instability. If less extreme, pulsational instability, existence in the
mass gap. Spin distribution are low spaced, with differential spaced tilts.
Binary formation channels: Isolated, starts with the stellar binary, supernova explosions
and mass transfers, envelope expands (mirror principle), drag force reduces separation.
Expected aligned spins (nearly, due to supernova kicks) and no detectable eccentricity
due to circularization through GW emission.



Tests of General Relativity

Cosmological Studies

Dynamical, encounters with stellar clusters, tighter orbits. Expected isotropic spin
distribution, and detectable eccentricity.

IMR Consistency Test
Mf , χf  inferred from the inspiral regime of the signal through the initial masses and
spins: Mf ≡ Mf(m1,m2, →S1, →S2) and χf ≡ χf(m1,m2, →S1, →S2), and consistency measured
from the ringdown regime. ΔMf/Mf  and Δχf/χf  must be consistent about zero
Parameterized Tests of GR
Post Newtonian series

φPN = 2πftc − φc −
π

4
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128η
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(πf̄)
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∑
i=−2

[φi + φil log(πf̄)](πf̄)
i
3

Introducing deviations δφi in the GR coefficients φi, as a variable fit. Note that the PN
order is given by the coefficient φi as 1

2 i PN order.
Black Hole Spectroscopy
Settling into Kerr Black Hole:

h+(t) − ιh×(t) =
∞

∑
ℓ=2

ℓ

∑
m=−ℓ

∞

∑
n=0

Aℓmn exp(−
t − t0

(1 + z)τℓmn

) exp(−ι
2πfℓmn

1 + z
(t − t0))Sℓmn(θ,φ,χf)

Note that the damping time τℓmn and frequency fℓmn are uniquely determined from Mf

and χf . Only dominant mode (2, 2, 0) detected so far. t0 non uniquely determined,
different values used to understand if posteriors are consistent.

Earlier studies through CMB anisotropies, and standard candles (Cepheid variable stars,
and Type I Supernova) through intensity measurements and building the distance ladder
from redshift d(z) measurements. Crisis in cosmology.
Gravitational waves as standard sirens, h ∝ 1

dL
, where dL is independent of any distance

ladder. Inference of dL(z). For bright sirens, redshift z can be measured from the
electromagnetic counterpart. For dark sirens, localization of a galaxy cluster. Estimate of
H0 is obtained.
Lensing of gravitational waves, time delay distributions. Deflection of gravitational waves
by spacetime curvature. Time delay distribution dependent on the lens mass and the
impact parameters.



02.02 Introduction to Matched Filtering, False
Alarm Statistics
Bayesian Analysis

Null hypothesis H0: s(t) = n(t)

Alternate hypothesis H1: s(t) = n(t) + h(t)

Odds ratio: O =
P(H1|s(t))
P(H0|s(t)) , further expanding by Bayes theorem: O =

P(H1)
P(H0)

P(s(t)|H1)
P(s(t)|H0)

Since the prior odds P(H1)
P(H0)

 is the a priori knowledge between the hypothesis, it is weighted

with the likelihood ratio (Bayes factor) P(s(t)|H1)
P(s(t)|H0)  which gives the a posteriori distribution of the

data.

Understanding the Matched Filter

h(t) →
~
h(t) such that in time domain, a cross-correlation is done by multiplying and sliding

monochromatic frequencies at every frequency and calculate the integral.

F(h) :=
~
h(f) = ∫

∞

−∞

dt h(t) exp(−ι2πft)

Sophisticated pattern matching! Fourier transform is the simplest matched filter.
The convolution

s ⋆ h(τ) = ∫ dt s(t)h(t + τ)

evolves to a product in frequency domain as

F(s ⋆ h(τ)) = ~s(f) ⋅
~
h(f)

Naively, we define the naive matched filter as

(s,h) = ∫
∞

0

df ~s(f)
~
h(f)

Leads to issues with normalization since the power is unbounded. Thereby, defining the
matched-filter as

(s,h)

√(h,h)
=

∫
∞

0 df ~s(f)
~
h(f)

√∫ ∞
0

df 
~
h(f)

~
h(f)

Discriminating power in understanding the phase modulation greater than the amplitude
modulation.

Noise weighted Inner-Product



Consider a zero-mean Gaussian noise, with variance σ2, distributed as
pn(xj) ∝ exp(− 1

2σ2 x
2
j), leading to the joint probability distribution

pn[{xj}] = (
1

√2πσ
)

N

exp[−
1

2σ2

N−1

∑
j=0

x2
j]

From the definition of the PSD, we have Sn(f) = limΔt→0 2σ2Δt, such that

lim
Δt→0

exp[−
1

2σ2

N−1

∑
j=0

x2
j] = lim

Δt→0
exp[−

1

Sn(f)

N−1

∑
j=0

⟨x2
j⟩]

This further simplifies to

exp [−∫
∞

∞

[~x(f)]2

Sn(f)
]

For colored noise, the time series is produced through a convolution of white noise

γ(t) = ∫
∞

−∞
K(t − t′)x(t′) dt′

which is a product in the frequency domain is ~γ(f) =
~
K(f)~x(f) thereby, defining the inner

product as

(a, b) ≡ 4R∫
∞

0

a∗(f)b(f)

Sn(f)

we have the probability distribution as

pn[s(t)] ∝ exp(−
1

2
(s, s))

Detection Statistics

The likelihood ratio is

Λ(→λ,H1|s(t)) =
p(s(t)|→λ,H1)

p(s(t)|H0)

where we marginalize over the parameter set →λ. The probability of the noise, assuming null
hypothesis, is

p(s(t)|H0) = pn[s(t)] ∝ exp(−
1

2
(s, s))

For the alternate hypothesis,

p(→λ, s(t)|H0) = pn[s(t) − h(t; →λ)] ∝ exp(−
1

2
(s − h, s − h))



Thereby, the likelihood ratio is

Λ(→λ,H1|s(t)) = exp(s,h) exp(−
1
2

(h,h))

For normalization,

h(→λ) = ρ(→λ)ĥ(→λ)

such that the matched filter SNR, normalizes Λ with dΛ
dρ = 0, such that

ρmf(→λ) = (s, ĥ(→λ)) =
(s,h(→λ))

√(h(→λ),h(→λ))

with the ensemble average as the optimal SNR being

⟨ρmf(→λ)⟩ = ρopt(→λ)

Template Bank

We note that we can combine the extrinsic parameters to give an effective amplitude A, and
further marginalize over the time and coalescence phase, hence dependence on intrinsic
parameters.

Accuracy of template bank, characterized by fitting factor, and the fractional loss in SNR in
nearby templates as

1 − (u(t, →λi),u(t, →λi + Δ→λi)) = 1 −A

Analytic marginalization over extrinsic parameters such that

∂ log Λ(H1|s(t))

∂→λ
→λ=→λmax

≡ [(s, ĥ(→λ)) −
1
2

(ĥ(→λ), ĥ(→λ))]
→λ=→λmax

= 0∣Time marginalization through SNR timeseires and maximum value
Template bank h(t, →λ) = Ag(t − t0, →λ), thereby

(s,h) = 2A ∫
∞

−∞

~s(f)→g∗(f)

Sn(f)
exp(ι2πft0) df

Phase marginalization, with data ~h(f; →λ,ϕ)~g(f; →λ) exp(ιϕc), with two templates at
ϕc = 0, π

2 , such that

(s,h)max = √(s,h(0))2 + (s,h(
π

2
))

2

For intrinsic parameters, we grid the continuous extrinsic parameter space with
templates. fine-graining so that dense packing ensures template recovery.



where the ambiguity factor defined as

A = 1 −(−
1

2
(u(t, →λi),

∂ 2u(t, →λi)

∂λi∂λj
))dλidλj

such that we define an effective metric gij = − 1
2 (u(t, →λi), ∂ 2u(t,→λi)

∂λi∂λj
) in the template bank

space.

Frequentist's Model Selection

Detection statistic results in a distribution due to noise, thereby defining a threshold for the
detection statistic to compare between the hypotheses. False alarm rate for the null
hypothesis above the threshold, and false dismissal when true hypothesis falls below the
threshold. Aim is to refine the detection statistic to distinguish the overlaps.

p-value is thereby, the probability of obtaining results observed at least as extreme as the
result actually observed. Integrating the true hypothesis from the threshold value to higher,
resulting in a confidence.

For the null hypothesis

p(ρmf |H0) =
1

√2π
exp(−

1

2
ρ2
mf)

and for the alternate hypothesis,

p(ρmf |H1) =
1

√2π
exp(−

1

2
(ρ2

mf − ρ2
opt))

Analytically, the false alarm rate is related through the erf function.

Coherent Tests

Since detectors are not co-located, or co-aligned, the non-Gaussian noises are local, hence
coherent analysis can be done through

χ2 test: Coherent power stream analysed.
Break the detector bandwidth into smaller bands and note if the response in each band
is consistent with signal. The loss in SNR in bands is characterized by the difference of
actual SNR in each bin subtracted from the total SNR weighted by number of bins:

Δρj := ρj −
ρ

p

We further define

χ2 := χ2(ρ1, … , ρp) = p

p

∑
j=i

(Δρj)
2



such that the mean ⟨χ2⟩ = p − 1, which gives us the total degrees of freedom, due to the
constraint of the total SNR.
Higher χ2 results in lower probability of occurrence from a natural signal.
Veto out: External study, to remove seismic noises.
We down-weight the samples where data does not appear Gaussian, by re-weighting the
total SNR. Combining the SNR timeseries and the χ2

r  series as

χ2
r := χ2

r(ρ1, … , ρp) =
p

2p − 2

p

∑
j=i

(Δρj)2

as the effective SNR

ρ̂(t) = {
1

1
2 [1+(χ2

r(t))3]
1
6

ρ(t) χ2
r ≥ 1

ρ(t) otherwise

Time Consistency Tests: Arrival time differences at each detectors based on source
location and inter-detector baseline. Δtij = tj − ti =

(→rj−→ri)⋅n̂
c

. Re-binning the SNRs
through time window sliding.
Multi-Detector Coincidence: Triggers from multiple detectors checked for coincidence.
Null Stream test: Construct linear combinations of data streams, to reveal glitches.



03.01 Estimation of GW Parameters
Signal Morphology

h(t; →λ) = ∑
i=+,×

Fi(α, δ,ψ)hi(t; →λ)

Intrinsic Parameters:

Bayes Theorem

Masses (M1,m2)

Higher mass, higher amplitude, shorter signal
Spins (→χ1, →χ2)

Aligned with orbital angular momentum, longer signal
Precession results in amplitude modulation
Tidal Deformabilities (Λ1, Λ2)

For neutron stars, with tidal effects

Extrinsic Parameters:
Luminosity distance dL
Distance to the source defined by the relative flux
Sky location (α, δ)

Relative position in the celestial sphere
Polarization ψ
Affects the antenna pattern functions, angle of polarization
Inclination angle θjn
Relative orientation of the source



The posterior probability distribution is encompassed as

p(→λ|d,H ) =
L(d|→λ)π(→λ|H )

Z

where Likelihood L is the probability of the noise residual

L(d|→λ) = ∏
i

2

T

1

Sn(fi)
exp [−

2

T

1

Sn(f)
(d − h(→λ))2]

and the corresponding prior π encompassing the distributions for masses (uniform, uniform
in M, q), spins (Isotropic), sky location, inclination angle, luminosity distance dL (Power law).
The evidence Z used for model selection serves a s a normalization constant

Z = ∫ L(d|→λ)π(→λ|H ) d→λ

with the ratio of evidences defined as the Bayes factor as

B =
Z1

Z0
=

∫ L(d|→λ)π(→λ|H1) d→λ

∫ L(d|→λ)π(→λ|H0) d→λ

Marginalizing the Posterior

Integrating the nuisance parameters, resulting in a marginalized posterior

p(λi|d) = ∫ (∏
k≠i

dθk)p(→λ|d) =
L(d|λi)π(λi|H )

Z

where the marginalized likelihood is

L(d|λi) = ∫ (∏
k≠i

dθk)L(d|→λ)

Parameter Estimation

The priors from the samples are updated every iteration through the Bayes theorem to
obtain the posteriors



Posteriors are sampled through a MCMC (Monte Carlo Markov Chain) Sampling. Simpler
through Rejection Sampling, wherein a proxy distribution is used to sample x and u ∈ U(0, 1)

and check if u ≤
f(x)

Cg(x)
, such that the point is in the curve and repeat. But, higher rejection

rates and non-efficient.

Monte Carlo estimate uses randomness to sample points to set up a Markov chain of
transient estimates. The probability of jumping from one state to another depends only on
the current states, described the transition matrix, resulting in a memoryless process. It
exhibits a stationery state distribution, such that pT = p, to obtain a fixed distribution. We
design the Markov chain such that the stationery distribution is the target distribution such
that p(x0)T (x1|x0) = p(x1)T (x0|x1).

Metropolis-Hasting MCMC Algorithm ​

Trial sample xt = xn + δ



Nested Sampling involves expressing the evidence

Z = ∫ L(d|θ)π(θ) dθ = ∫ L(X) dX

where

X(Λ) = ∫
L(→λ)>Λ

π(→λ) d→λ

giving the effective prior mass. Iteratively, the prior mass is reduced, with rejecting samples
with low likelihood. Larger samples in region of likelihood.

Compute acceptance probability Pa = min(
p(xt)
p(xn) , 1)

Draw r ∈ U(0, 1), accept if r < Pa, else reject

xn+1 = {
xn r < Pa

xt r > Pa

Start with random samples →λ1, … , →λn, setting Z = 0, with X0 = 1 as the highest prior
mass
Find the lowest Z from the n points, and set X1 = exp(− 1

N ) and sample.
Update the evidence as Z → Z + Z(X0 − X1)

Repeat above steps such that Xi = exp(− i
N ) and Z → Z + Z(Xi − Xi−1)

After j steps, we have the evidence Z → Z + 1
N [Z(λ0) + ⋯ + Z(λn)]


