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Abstract
The project focuses on the development of a Reduced-Order Quadrature (ROQ) model
to significantly reduce computational costs during gravitational wave parameter esti-
mation from binary neutron star mergers. By leveraging the TEOBResumSPA wave-
form model and empirical interpolation methods, the study successfully demonstrates
the acceleration of Bayesian inference for the inspiral and post-merger stages of the
GW170817 event. The project’s outcome contributes to faster and more efficient
gravitational-wave astronomy, enabling real-time analysis of complex waveforms with
high precision.
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1. Introduction
1.1 Parameter Estimation
For parameter estimation studies, we are interested in computing the posterior proba-
bility density function (PDF)

p(Λ⃗|d) = P(Λ⃗) L(d|Λ⃗)
Z(d) ,

on the set of model parameters Λ⃗, where P(Λ⃗) is the prior probability on the model
parameters, L(d|Λ⃗) is the likelihood of the data and Z(d) is known as the Bayesian
evidence and describes the probability of the data given the model. The evidence is
typically used for model selection and enters only as an overall scaling in parameter
estimation.

Assuming the detector data d contains the GW signal h(Λ⃗true) and noise n, the
log-likelihood function can be computed as

log L(d|Λ⃗) = −1
2(d− h(Λ⃗), d− h(Λ⃗)) ,

where d = h(Λ⃗true) + n and (a, b) is an overlap integral:

(d, h(Λ⃗)) = 4ℜ ∆f
L∑

k=1

d̃∗(fk)h̃(fk; Λ⃗)
Sn(fk) .

Here d̃(fk) and h̃(fk; Λ⃗) are the discrete Fourier transforms at frequencies {fk}L
k=1 and

Sn(fk) is the detector’s noise power spectral density (PSD).

For a given observation time T = 1/∆f and detection frequency window (fhigh −
flow) there are L ∼ int ([fhigh − flow]T ) sampling points in the likelihood inner prod-
uct. When L is large and Λ⃗ must be sampled extensively there are three bottlenecks:
(i) evaluation of the model at each fk; (ii) numerically computing the sum in the
likelihood; and (iii) repeated evaluation of the likelihood.

1.2 Reduced Order Quadratures
Reduced Order Modeling (ROM) [1] is a promising technique for mitigating the com-
putational cost of gravitational-wave parameter estimation. A ROM approach seeks
to find a computationally efficient representation of the waveform model. If a set of
N < L basis elements can be found which accurately spans the continuum template
space, it is possible to replace the overlap with a quadrature rule containing only N
terms, reducing the overall cost by a factor of L/N .

We shall use a combination of the reduced basis method and the empirical inter-
polation method, whose favorable computational efficiency, ease-of-parallelization and
numerical stability make them attractive candidates for tackling waveform systems
and other challenging models. The reduced basis method constructs a basis set of
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N elements whose span reproduces the GW model within a specified accuracy. The
empirical interpolation method then uses this model-specific basis to construct an N -
point interpolant defined on the model space. Substituting the empirical interpolant
representation into the likelihood yields the reduced order quadrature (ROQ) rule which
ultimately provides the performance gain of L/N . By selecting a small number of wave-
forms basis elements and an equal number of discrete interpolation frequency points,
ROQs are capable of dramatically speeding up both waveform evaluation and integrals
involving them, such as the Wiener inner products entering the standard GW likeli-
hood. This is achieved by sufficiently accurate and fast to evaluate interpolants, built
on a large training dataset.

1.3 Deriving and Implementing the ROQs
A gravitational-wave strain signal h(t) detected by a ground-based interferometer has
the form

h(t; Λ⃗) = F+ (α, δ, ψ, dL)h+(t;ϕc, tc, λ⃗) + F× (α, δ, ψ, dL)h×(t;ϕc, tc, λ⃗) ,

where the antenna patterns F(+,×) project the gravitational wave’s +- and ×-polarization
states, h(+,×), into the detector’s frame.

The antenna patterns are functions of variables which specify the orientation of
the detector with respect to the binary: the distance to the source (dL) as well as the
right ascension (α), declination (δ) and polarization (ψ) angles. These four variables,
along with the coalescence time (tc) and its orbital phase at coalescence (ϕc), describe
the signal’s dependence on parameters that have a trivial effect on the waveform’s
amplitude and phase.

We shall use λ⃗ to denote the signal’s dependence on parameters that have a non-
trivial effect on the waveform’s amplitude and phase, such as its masses, spin magnitude
and spin orientation. The strain, and consequently the likelihood, depends on the full
set of parameters Λ⃗ = {α, δ, ψ, r, tc, ϕc, λ⃗}.

When discussing waveform models, it is common practice to first introduce a
complex gravitational wave strain

h+(t;ϕc, tc, λ⃗) − ih×(t;ϕc, tc, λ⃗) =
∞∑

ℓ=2

ℓ∑
m=−ℓ

hℓm(t;ϕc, tc, λ⃗)−2Yℓm ,

which is subsequently decomposed into a basis of spin-weighted spherical harmonics.
Most gravitational waveform models make predictions for the modes hℓm(t; λ⃗), from
which a model of what a noise-free detector records, h(t; Λ⃗), is readily recovered.

The remainder of this subsection sketches the steps leading to the reduced order
quadrature rule. To build computationally efficient approximations, we work directly
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with the Fourier transform of the strain

h̃(f ; Λ⃗) =
∫ ∞

−∞
h(t; Λ⃗)e2πiftdt

= F+h̃+(f ;ϕc, tc, λ⃗) + F×h̃×(f ;ϕc, tc, λ⃗)
= e−2πiftc

[
F+h̃+(f ;ϕc, 0, λ⃗) + F×h̃×(f ;ϕc, 0, λ⃗)

]

where the antenna pattern’s arguments are omitted for brevity. The last equality
follows from h(t; tc) = h(t− tc; 0), as a non-zero coalescence time tc simply offsets the
signal’s time-of-arrival. Because h̃(+,×) enters linearly into (d, h) and quadratically into
(h, h), one of the goals of this paper is to build (temporarily focusing on the model’s
internal parameterization λ⃗) an approximation

h̃A(fi; λ⃗) ≈
NL∑
j=1

Bj(fi)h̃A(Fj; λ⃗) , with A ∈ {+,×} ,

ℜ
[
h̃A(fi; λ⃗)h̃∗

B(fi; λ⃗)
]

≈
NQ∑

k=1
Ck(fi)ℜ

[
h̃A(Fk; λ⃗)h̃∗

B(Fk; λ⃗)
]
, with A,B ∈ {+,×} ,

that accurately approximates both the polarization states and their products. Here
the labels A and B take the values (+,×), {Bj}NL

j=1 is the reduced basis (RB) for the
polarizations and {Ck}NQ

k=1 is the RB for the real part of all possible products of the
polarizations. Notice that h̃+ and h̃× share the same basis {Bj}NL

j=1. Similarly the
approximation to the products h̃+h̃

∗
+, h̃×h̃

∗
× and ℜh̃+h̃

∗
× also share a basis {Ck}NQ

k=1.

The values h̃A(λ⃗;Fj) are evaluations of the A-polarization states at the empirical
interpolation nodes {Fj}NL

j=1. The location of these nodes are uniquely selected to yield
accurate interpolation with the set of basis vectors {Bj}N

j=1. Similarly, polarization
products h̃A(Fk; λ⃗)h̃∗

B(Fk; λ⃗) are evaluated at a set of empirical interpolation nodes
{Fk}NQ

k=1, which are distinct from {Fj}NL
j=1. The approximation is known as an empirical

interpolant, and its substitution into into the inner product yields a reduced order
quadrature (ROQ) rule.

We break the likelihood into those pieces which we can approximate

2 log L = 2(d, h) − (h, h) − (d, d)
= 2F+(d, h+) + 2F×(d, h×) − |F+|2 (h+, h+)
− |F×|2 (h×, h×) − 2F+F×(h+, h×) − (d, d)
≈ 2F+(d, h+)ROQ + 2F×(d, h×)ROQ − |F+|2 (h+, h+)ROQ

− |F×|2 (h×, h×)ROQ − 2F+F×(h+, h×)ROQ − (d, d)

On substituting the approximations into the inner products, we derive the linear

(d, hA(λ⃗))ROQ ≈
NL∑
j=1

ωj(tc)h̃A(Fj; λ⃗) ,
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ωj(tc) = 4ℜ ∆f
L∑

i=1

d̃∗(fi)Bj(fi)
Sn(fi)

e−2πitcfi

and quadratic ROQs

(hA(λ⃗), hB(λ⃗))ROQ ≈
NQ∑

k=1
ψkh̃A(Fk; λ⃗)h̃∗

B(Fk; λ⃗) ,

ψk = 4ℜ ∆f
L∑

i=1

Ck(fi)
Sn(fi)

,

Using the definition of the weights and the reality of the basis set {Ck}NQ
k=1, ex-

pression can be written in a convenient form for numerical implementation as

2 log L(d|Λ⃗)ROQ + (d, d) = 2ℜ
NL∑
j=1

ωj(tc)h̃(Fj; Λ⃗) −
NQ∑

k=1
ψjh̃(Fk; Λ⃗)h̃∗(Fk; Λ⃗) .

Compared to the usual likelihood expression, using the typical overlap

2 log L(d|Λ⃗) + (d, d) = 2ℜ
L∑

l=1

4∆fd̃∗(fl)
Sn(fl)

h̃(fl; Λ⃗) −
L∑

l=1

4∆f
Sn(fl)

h̃(fl; Λ⃗)h̃∗(fl; Λ⃗) ,

shows the ROQ rule to be similar to the standard evaluation pattern, thereby allowing
existing codes to easily implement these tools.

1.4 Algorithm Summary
We employ the JenpyROQ algorithm, presented in Tissino et al. [2], which is an updated
version of the PyROQ algorithm, presented in Smith et al. [1]. In the first step of the
algorithm, a pre-selected dataset of waveform vectors (typically referred to as basis)
is constructed. Elements are then augmented by randomly generating a waveform
dataset, and adding to the basis the element with the largest residuals after projection
onto the basis. This is repeated until a user-specified tolerance is reached. In a second
step, the pre-selected basis is enriched by generating increasingly larger datasets which
might have different tolerance thresholds. In each of these datasets, the element with
the largest interpolation error is added onto the basis, iterating until all the elements
of the dataset can be represented with a given accuracy.
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2. Demonstration with GW170817
2.1 Workflow of Analysis
Firstly, we inject the full signal consisting of the inspiral and post-merger components,
and build ROQ bases for the same, to be followed by parameter estimation.

Injected Waveform
TEOBResumSPA NRPMw

ROQ basis
JenpyROQ

lin: 429 (tol: 10−4) ×1216
qua: 387 (tol: 10−6) ×1348

Parameter Estimation
bajes-ROQ

High unphysical dlogz

Full PE (128s)

Injected Waveform
TEOBResumSPA NRPMw

ROQ basis
JenpyROQ

lin: 422 (tol: 10−4) ×309
qua: 390 (tol: 10−6) ×334

Parameter Estimation
bajes-ROQ

Successful Recovery

Full PE (32s)
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Alternatively, we compute the inspiral and post-merger components indepen-
dently, and combine the likelihoods. The ROQ basis for the inspiral speeds up compu-
tation upto the frequency of merger, and then is followed by the PE likelihood of the
post merger.

Injected Waveform
TEOBResumS-SPA

ROQ basis
JenpyROQ

lin: 103 (tol: 10−4) ×2520
qua: 5 (tol: 10−6) ×51917

Parameter Estimation
bajes-ROQ

Successfull Recovery

Full
Waveform

Combined
Likelihood

Injected Waveform
NRPMw

Parameter Estimation
bajes

Successfull Recovery

Inspiral (32s) Post-Merger (1s)
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3. Combining the Inspiral and Post-
Merger Likelihoods
3.1 Modified Likelihood function
Since the bottleneck in the ROQ analyses results in the relentless computation of the
likelihood over all frequency bins, while it exclusively speeds up in the inspiral regime,
we proceed forward to compute the likelihood in parts.

Assuming the detector data d contains the GW signal h(Λ⃗true) and noise n, the
log-likelihood function can be computed as

log L(d|Λ⃗) = −1
2(d− h(Λ⃗), d− h(Λ⃗))

= −1
2(d− h(Λ⃗), d− h(Λ⃗))IM − 1

2(d− h(Λ⃗), d− h(Λ⃗))PM

≈ −1
2(d− h(Λ⃗), d− h(Λ⃗))ROQ − 1

2(d− h(Λ⃗), d− h(Λ⃗))PM

= log L(d|Λ⃗)ROQ + log L(d|Λ⃗)PM ,

where d = h(Λ⃗true) + n and (a, b) is an overlap integral:

(d, h(Λ⃗)) = 4ℜ ∆f
L∑

k=1

d̃∗(fk)h̃(fk; Λ⃗)
Sn(fk) .

Here d̃(fk) and h̃(fk; Λ⃗) are the discrete Fourier transforms at frequencies {fk}L
k=1 and

Sn(fk) is the detector’s noise power spectral density (PSD). Similarly, defining (a, b)IM
upto the merger frequency and (a, b)PM from the merger frequency.

As defined earlier, we approximate the inspiral likelihood by the ROQ computa-
tion. Using the definition of the weights and the reality of the basis set {Ck}NQ

k=1, the
ROQ results in

2 log L(d|Λ⃗)ROQ + (d, d)IM = 2ℜ
NL; IM∑

j=1
ωj(tc)h̃(Fj; Λ⃗) −

NQ; IM∑
k=1

ψjh̃(Fk; Λ⃗)h̃∗(Fk; Λ⃗) .

Similarly

2 log L(d|Λ⃗)PM + (d, d)PM = 2ℜ
L; PM∑

l=1

4∆fd̃∗(fl)
Sn(fl)

h̃(fl; Λ⃗) −
L; PM∑

l=1

4∆fh̃∗(fl; Λ⃗)
Sn(fl)

h̃(fl; Λ⃗) ,

3.2 Source Code
JenpyROQ is publicly available at github.com/GCArullo/JenpyROQ, TEOBResumSPA
is publicly available at bitbucket.org/eobihes/teobresums/, NRPMw implemented in
bajes is publicly available at github.com/matteobreschi/bajes. The Bayesian analyses
presented in this work have been performed with bajes version 1.1.0, whose imple-
mentation of ROQ of the inspiral is available at github.com/nishkalrao20/bajes/tree
/roq inspiral branch.
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4. Implementation
4.1 ROQ Inpsiral Basis for TEOBResumSPA NRPMW

4.1.1 Histogram of ROQ nodes

Evidently the selected frequency points cluster at small values. This is intuitively ex-
pected because lower frequency intervals contain a greater number of waveform cycles,
a feature which is automatically detected by the empirical interpolation method.
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4.1.2 Waveform in the Linear basis

We set a tolerance threshold of 10−3 for the linear basis, ensuring that the ROQ in-
terpolants are valid. We use a total of 103 training datapoints, split between the
pre-selection and the enrichment steps. A pre-selected basis is constructed using ele-
ments for the linear case, and 103 points at each step. We set three enrichment cycles
each composed of 103 datapoints, and a respective relative tolerance of 0.1. For the PE
analysis discussed above, we obtained a sufficiently accurate basis with 623 linear basis
elements, achieving a linear frequency axis reduction factor of 416 times, from 259585
original frequency bins. We confirm the accuracy of the constructed interpolants by
applying them to the reconstruction of validation datapoints.

4.1.3 Waveform in the Quadratic basis

We set a tolerance threshold of 10−5 for the quadratic basis, ensuring that the ROQ
interpolants are valid. We use a total of 103 training datapoints, split between the pre-
selection and the enrichment steps. A pre-selected basis is constructed using elements
for the quadratic case, and 103 points at each step. We set three enrichment cycles
each composed of 103 datapoints, and a respective relative tolerance of 0.1. For the
PE analysis discussed above, we obtained a sufficiently accurate basis with 4 quadratic
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basis elements, achieving a quadratic frequency axis reduction factor of 64896 times,
from 259585 original frequency bins. We confirm the accuracy of the constructed
interpolants by applying them to the reconstruction of validation datapoints.
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4.2 ROQ PE with TEOBResumSPA NRPMw

4.2.1 Injection and Priors

We analyse an injected GW170817 like signal centered around GPS time 1126259462
with a sampling rate of 8192 Hz and a duration of 128 s, considering the frequency range
from [20, 8192] Hz. Our PE relies on the MPI-parallelized bajes pipeline with ROQ
inspiral support upto merger frequency of 2048 Hz encoded and the dynesty nested
sampler. To summarise, the injection parameters include M = 1.188, q = 1., Λ1 =
600, Λ2 = 600, ι = 0.0, ϕref = 0.0, DL = 68MPc, tcoll = 14 ms, α = 0.021, ϕpm = 1.57.

The mass prior is chosen to be flat in the mass components m1,2, although the
sampling is then performed in (M, q), with ranges wide enough to capture the full pos-
terior width. We sample on aligned-spin components, with an isotropic prior bounded
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by χ1,2 ≤ 0.8. The prior on the tidal parameters is uniform in the ranges Λ1,2 ∈ [5, 5000]
and the luminosity distance employs a volumetric prior. Other priors are set according
to standard prescriptions in GW astronomy. We do not assume prior knowledge on
electromagnetic counterparts.
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