Comprehensive analysis of time-domain Overlapping Gravitational Wave Transients

Gravitational Wave Analysis

Overlapping Transients

Lensing Effects

Strong Lensing (Type II):

It is an effect of scaling the signal’s amplitude, a temporal delay and an overall phase shift. Resulting in non-trivial properties in the time domain for certain parameters.

Microlensing:

Exhibits frequency-dependent amplification due to wave-optics effects. Resemblance to the beating patterns in overlapping signals.

Parameters

Systematically vary key parameters influencing waveform evolution: Chirp mass ratio: MB/MA\mathcal{M}_B/\mathcal{M}_A, SNR ratio: SNRB/SNRA\rm{SNR_B/SNR_A}, Coalescence time difference: Δtc\Delta t_c.

Parameter estimation:

MB/MA{0.5,1,2}\mathcal{M}_B/\mathcal{M}_A \in \{0.5,\,1,\,2\}, SNRB/SNRA{0.5,1}\mathrm{SNR_B/SNR_A} \in \{0.5,\,1\}, Δtc[1,1]\Delta t_c \in [-1,\,1]\,s, (60 signals)

Fitting factor:

MB/MA[0.1,10]\mathcal{M}_B/\mathcal{M}_A \in [0.1,\,10], SNRB/SNRA[0.1,10]\mathrm{SNR_B/SNR_A} \in [0.1,\,10], Δtc[1,1]\Delta t_c \in [-1,\,1]\,s, (O\sim\mathcal{O}(5000) signals)

Methods

Parameter Estimation

Bayesian inference: L(dθ)exp[12dh(θ)dh(θ)]\mathcal{L}(d|\theta)\propto\exp\Big[-\tfrac{1}{2}\langle d-h(\theta)|d-h(\theta)\rangle\Big] log10BULBayes Factor=log10ZLlog10ZU\underbrace{\log_{10}\mathcal{B}^L_U}_{\text{Bayes Factor}} = \log_{10}\mathcal{Z}_L - \log_{10}\mathcal{Z}_U ZM=dθL(dθ,HM)πM(θHM)\mathcal{Z}_M = \int d\theta \mathcal{L}(d | \theta, \mathcal{H}_M) \pi_M(\theta | \mathcal{H}_M)

Fitting Factor

Maximizing waveform overlap: M[h1,h2]=maxtc,Φch1h2h1h1h2h2.\mathcal{M}[h_1, h_2] = \max_{t_c, \Phi_c}\frac{\langle h_1 | h_2 \rangle}{\sqrt{\langle h_1 | h_1 \rangle \langle h_2 | h_2 \rangle}}. F=maxλM[h1,h2(λ)]\mathcal{F}=\max_{\lambda}\,\mathcal{M}[h_1, h_2(\lambda)] log10BUL=(FL2FU2)SNR22\log_{10}\mathcal{B}^L_U = (\mathcal{F}_L^2 - \mathcal{F}_U^2)\frac{\mathrm{SNR}^2}{2}

Unlensed Singles:

Parameter Estimation:

Fitting Factor:

Type II Lensed:

Parameter Estimation:

Fitting Factor:

Microlensed:

Parameter Estimation:

Fitting Factor:

Conclusions